bài 2: Cho tam giác ABC trung tuyến ad .Vẽ tia phân giác góc ADB cắt tại M tia phân giác góc ADC cắt AC tại N
a) chứng minh MB/MA=BD/AD
b) chứng minh MB/MA=NC/NA
c) chứng minh MN//MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AMI zà tam giác ABD có
góc BAD chung
xét tam giác ABD có tia phân giác DM
=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)
xét tam giac ADC có tia phân giác DN
\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)
mà BD=DC (gt ) (3 )
từ 1 ,2 ,3 suy ra
\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)
=> MN//BC
b) Tam giác ABD có MI//BD
=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)
tam giác ADC có IN//DC
=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)
từ (4) ,(5) suy ra
\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)
mà BD=DC
=> MI=NI
=> I là trung điểm của MN
a: MB<MC+CB
=>MB+MA<MC+CB+MA<AC+CB
b: Xét ΔGDB và ΔKDC có
góc GDB=góc KDC
góc DGB=góc DKC
=>ΔGDB đồng dạng với ΔKDC
=>GD/KD=BD/DC=1
=>D là trung điểm của GK
=>GD=1/2GK=1/2AG
=>AG=2/3AD
=>G là trọng tâm của ΔACB
=>M là trung điểm của AC
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔABM=ΔDBM
Suy ra; BA=BD
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC