Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AMI zà tam giác ABD có
góc BAD chung
xét tam giác ABD có tia phân giác DM
=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)
xét tam giac ADC có tia phân giác DN
\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)
mà BD=DC (gt ) (3 )
từ 1 ,2 ,3 suy ra
\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)
=> MN//BC
b) Tam giác ABD có MI//BD
=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)
tam giác ADC có IN//DC
=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)
từ (4) ,(5) suy ra
\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)
mà BD=DC
=> MI=NI
=> I là trung điểm của MN
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC