K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1

Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)

\(\Rightarrow x=3k;y=2k;z=-2k\) 

Ta có: \(x^2+3y^2-z^2=17\)

\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)

\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)

\(\Rightarrow17k^2=17\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

Khi k = 1 thì:

\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)

Khi k = -1 thì: 

\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)

29 tháng 10 2021

Áp dụng TCDTSBN ta có: 

\(\dfrac{x}{3}=\dfrac{y}{-2}=\dfrac{z}{-5}=\dfrac{2z-3y}{2.-2-3.-5}=\dfrac{44}{11}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\\ \dfrac{y}{-2}=4\Rightarrow y=-8\\ \dfrac{z}{-5}=4\Rightarrow z=-20\)

14 tháng 7 2021

Đề sai rồi bạn nhé

14 tháng 7 2021

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

22 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

9 tháng 8 2017

Đún đấyg

9 tháng 12

Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.

Cảm ơn các em đã đồng hành cùng Olm.                        

15 tháng 4 2022

a) \(4x-2=x\)

\(4x-x=2\)

\(3x=2\)

\(x=\dfrac{2}{3}\)

b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)

Vậy hàm số cần tìm là \(y=3x\)

c) Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)

\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)

21 tháng 9 2023

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

10 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  

`#3107.101117`

a)

`x \div y \div z = 4 \div 3 \div 9`

`=> x/4 = y/3 = z/9`

`=> x/4 = (3y)/9 = (4z)/36`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`

`=> x/4 = y/3 = z/9 = 2`

`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`

Vậy, `x = 8; y = 6; z = 18`

c)

\(x \div y \div z = 1 \div 2 \div 3\)

`=> x/1 = y/2 = z/3`

`=> (4x)/4 = (3y)/6 = (2z)/6`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`

`=> x/1 = y/2 = z/3 = 9`

`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`

Vậy, `x = 9; y = 18; z = 27`

Các câu còn lại cậu làm tương tự nhé.

26 tháng 10 2021

x254n3jsm3,s3333