K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

y=(m-1)x+2

=>(m-1)x-y+2=0

Khoảng cách từ O đến (d) là:

\(\dfrac{\left|0\left(m-1\right)+0\left(-1\right)+2\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{2}{\sqrt{\left(m-1\right)^2+1}}\)

Để khoảng cách từ O đến (d) bằng \(\sqrt{2}\) thì \(\dfrac{2}{\sqrt{\left(m-1\right)^2+1}}=\sqrt{2}\)

=>\(\sqrt{\left(m-1\right)^2+1}=\sqrt{2}\)

=>\(\left(m-1\right)^2+1=2\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

12 tháng 1 2024

Mình cảm ơn ạ

NV
2 tháng 9 2021

Gọi A là giao điểm của d với Ox \(\Rightarrow A\left(-\dfrac{1}{m-3};0\right)\Rightarrow OA=\dfrac{1}{\left|m-3\right|}\)

Gọi B là giao điểm của d với Oy \(\Rightarrow B\left(0;1\right)\Rightarrow OB=1\)

Từ O kẻ OH vuông góc AB \(\Rightarrow OH=\dfrac{1}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông OAB:

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Rightarrow4=\left(m-3\right)^2+1\)

\(\Rightarrow\left(m-3\right)^2=3\Rightarrow\left[{}\begin{matrix}m=3+\sqrt{3}\\m=3-\sqrt{3}\end{matrix}\right.\)

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.

$M\in (d), \forall m$

$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$

$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\) 

Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)

b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$

Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$

Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)

Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)

c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min

$\Leftrightarrow (m-2)^2+1$ min

Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$

25 tháng 8 2023

còn cách nào ngoài cách áp dụng công thức HTLG ko

 

6 tháng 5 2023

Ta có :

    y = m\(x\) + 2

⇒ y - m\(x\) - 2 = 0

⇒ -m\(x\) + y  - 2 = 0

⇒d(O;d) = \(\dfrac{\left|0-0-2\right|}{\sqrt{m^2+1}}\) = 1

 ⇒  \(\sqrt{1+m^2}\) =  2

⇒ 1 + m2 = 4 ⇒ m2 = 3 ⇒ m = -\(\sqrt{3}\); m = \(\sqrt{3}\)

b, d(O;d)  = \(\dfrac{2}{\sqrt{m^2+1}}\)  

         2 > 0; 1 + m2 > 0 Vậy \(\dfrac{2}{\sqrt{m^2+1}}\) lớn nhất ⇔ 1 + m2 nhỏ nhất.

    m2 ≥ 0 ⇒ 1 + m2 ≥ 1 vậy m2 + 1  đạt giá trị nhỏ nhất là 1 khi m = 0

                 ⇒d(max) = 2 ⇒ m= 0

                Vậy m = 0 thì khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất và khoảng cách đó là 2

Kết luận a, Với m = -\(\sqrt{3}\)\(\sqrt{3}\) thì khoảng cách từ gốc tọa độ tới d bằng 1

              b,  Với m = 0 thì khoảng cách từ gốc tọa độ tới d bằng 2 là khoảng cách lớn nhất .

 

                                          

10 tháng 12 2023

y=x+m-1

=>x-y+m-1=0

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+m-1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|m-1\right|}{\sqrt{2}}\)

Để \(d\left(O;\left(d\right)\right)=3\sqrt{2}\) thì \(\dfrac{\left|m-1\right|}{\sqrt{2}}=3\sqrt{2}\)

=>|m-1|=6

=>\(\left[{}\begin{matrix}m-1=6\\m-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-5\end{matrix}\right.\)