Trong cuộc thi The Voice, Mỹ Tâm có số thí sinh ở đội mình bằng \(\frac{1}{2}\) số thí sinh của đội Tuấn Hưng và gấp đôi của đội Thu Phương . Hãy đặt biểu thức thể hiện số thí sinh của Mỹ Tâm,biết X là số thí sinh của Mỹ Tâm, Y là số thí sinh của Tuấn Hưng ,Z là số thí sinh của Thu Phương (Chỉ là giả thuyết)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh nữ là a
Gọi số học sinh nam là 2a (vì số học sinh nam gấp 2 lần số học sinh nữ)
Thầy giáo thấy có 3/4 số học sinh nam và 2/3 số học sinh nữ của lớp tham gia hội nghi thức vậy thay váo biêu thức ta có:
2a*3/4 +a*2/3= 39
a*3/2 + a*2/3= 39
a*(3/2+2/3)=39
a*13/6= 39
a=39:13/6
a=18 h/s
Vậy số học sinh nữ cuả lớp là 18 học sinh
Nếu bài kiểm tra của 24 thí sinh đó đều làm 2 tờ giấy thi thì số tờ giấy là:
24.2 = 48 (tờ)
Mà chỉ có 33 tờ giấy nên số tờ giấy nhiều hơn so với đề bài nếu 24 thí sinh đó đều làm 2 tờ giấy chính bằng số thí sinh làm 1 tờ giấy thi và là:
48 - 33 = 15 (thí sinh)
Số thi sinh làm 2 tờ giấy thi là:
24 - 15 = 9 (thí sinh)
Tổng số HS làm 1 - 2 tờ:
24 - 3 = 21 (học sinh)
Tổng số giấy làm bài của 21 học sinh làm từ 1-2 tờ:
43 - 3 x 3 = 34 (tờ)
Gọi a,b lần lượt là số học sinh làm 1 tờ giấy, 2 tờ giấy trong kì thi tuyển sinh vào 10 đó. (0<a,b<21. a và b là số tự nhiên)
Vì tổng số hs làm 1-2 tờ là 21 hs nên ta có pt (1): a+b=21
Vì tổng số giấy 21 hs này làm là 34 tờ nên ta có pt (2): a+ 2b=34
Từ pt (1) và (2), ta lập hệ pt:
\(\left\{{}\begin{matrix}a+b=21\\a+2b=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\left(TM\right)\\b=13\left(TM\right)\end{matrix}\right.\)
Vậy có 8 thí sinh là 1 tờ giấy, 13 thí sinh làm 2 tờ giấy
Gọi số thí sinh là x ( \(\inℕ^∗\) ; học sinh ) và số phòng thi là y ( \(\inℕ^∗\); phòng )
+) Nếu mỗi phòng chỉ có 25 học sinh thì có 14 học sinh chưa có phòng thi:
=> x = 25.y + 14 (1)
+) Nếu mỗi phòng có 26 học sinh thì phòng cuối cùng chỉ có 5 bạn:
=> x = 26 ( y - 1) + 5 (2 )
Từ (1) ; (2) ta có hệ: \(\hept{\begin{cases}x-25y=14\\x-26y=-21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=889\\y=35\end{cases}}\)( thỏa mãn)
Vậy có 889 thí sinh và 35 phòng thi
Giải:
Vì mỗi thí sinh phải giải 5 bài toán. Mỗi bài toán đúng được tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm nên ta có 5 trường hợp sau:
Nếu đúng 5 bài thì số điểm được là: 5. 4 = 20 (điểm).
Nếu đúng 4 bài thì số điểm được là: 4. 4 - 2 = 14 (điểm).
Nếu đúng 3 bài thì số điểm được là: 3. 4 – 4 = 8 (điểm).
Nếu đúng 2 bài thì số điểm được là: 2. 4 – 6 = 2 (điểm).
Nếu đúng 1 bài hoặc không đúng bài nào thì đều được 0 điểm.
Như vậy có 6 thí sinh dự thi nhưng chỉ có 5 loại điểm nên theo nguyên lý Điricle sẽ có ít nhất 2 thí sinh bằng điểm nhau.
X=\(\frac{1}{2}Y\)=2Z