(x+3).(y -7) = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Mik làm mấy phần mà bạn dưới chưa làm)
11) xy+x+y=9
\(\Leftrightarrow\) xy+x+y+1=9+1
\(\Leftrightarrow\left(xy+x\right)+\left(y+1\right)\)=10
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=10\)
\(\Leftrightarrow\) (x+1)(y+1)=10=1.10=10.1=-1.-10=-10.-1=2.5=5.2=-2.-5=-5.-2
\(\Rightarrow\) TH1: x+1=1 ; y+1=10
\(\Leftrightarrow x=0;y=9\)
TH2: x+1=10;y+1=1
\(\Leftrightarrow\)x=9;y=0
TH3: x+1=-1;y+1=-10
\(\Leftrightarrow\) x=-2;y=-11
...........
Vậy:........
( Bạn tự làm nốt chứ dài quá, mik chỉ hướng dẫn cách làm bài thôi)
1) -x = -7
=> x = 7
2) - x = 17
=> x = - 17
3) |x| = 17
=> x = ±17
4) -(-x) = |-17|
=> x = 17
5) - 19 - x = 17
=> - x = 17 + 19
=> x = - 36
6) - 19 - x = - 17
=> - x = - 17 + 19
=> -x = 2
=> x = - 2
7) - 5 - (10 - x) = 7
=> - 5 - 10 + x = 7
=> - 15 + x = 7
=> x = 7 + 15
=> x = 22
8) |x + 3| + 7 = 12
=> |x + 3| = 12 - 7
=> |x + 3| = 5
=> x + 3 = 5 hoặc x + 3 =- 5
=> x = 2 hoặc x = - 8
9) 2 - |x - 2| = x
=> - |x - 2| - x = - 2
TH1: x >= 2
- (x - 2) - x = - 2
=> - x + 2 - x =- 2
=> - 2x = - 4
=> x = 2 (nhận)
TH2: x < 2
-[-(x - 2)] - x = - 2
=> x - 2 - x = - 2
=> 0x = 0 (vô số nghiệm)
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=\frac{-18}{9}=-2\)
\(\frac{x+2}{7}=-2\Rightarrow x=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=-12\)
\(\frac{z}{3}=-2\Rightarrow z=-6\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+2}{7}=\dfrac{y-3}{5}=\dfrac{z}{3}=\dfrac{x+2+y-3-z}{7+5-3}=\dfrac{-17-1}{9}=-\dfrac{18}{9}=-2\)\(\Rightarrow\left\{{}\begin{matrix}x=-2.7-2=-16\\y=-2.5+3=-13\\z=-2.3=-6\end{matrix}\right.\)
Ta có: x = \(\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
y = \(\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Do \(7^{16}+1< 7^{17}+1\) => \(\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\) => \(-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
=> \(1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\) => x < y
Trả lời:
\(x=\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=\frac{7^{16}+1}{7^{16}+1}-\frac{4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
\(y=\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=\frac{7^{17}+1}{7^{17}+1}-\frac{4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Ta có: \(7^{16}< 7^{17}\)
\(\Leftrightarrow7^{16}+1< 7^{17}+1\)
\(\Leftrightarrow\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\)
\(\Leftrightarrow-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
\(\Leftrightarrow1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\)
\(\Leftrightarrow x< y\)
Vậy x < y
\(\text{Ta có 2 trường hợp : }\)
\(\text{Trường hợp 1 : }\left(x-7\right)\left(x+y-3\right)=1.17=17\)
\(\Rightarrow x=7+1=8\)
\(\Rightarrow y=17+3-8=12\)
\(\text{Trường hợp 2 : }\left(x-7\right)\left(x+y-3\right)=\left(-1\right)\left(-17\right)=17\)
\(\Rightarrow x=7+\left(-1\right)=6\)
\(\Rightarrow y=\left(-17\right)+3-6=-20\)
\(\text{Vậy ta tìm được : }\hept{\begin{cases}x=8;y=12\\x=6;y=-20\end{cases}}\)
Do x,y là các số tự nhiên và 17 là số nguyên tố.Ta xét 2 trường hợp:
TH1: \(\hept{\begin{cases}x-7=17\\x+y-3=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=24\\24-3+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=24\\21+y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=24\\y=1-21=-20\end{cases}}\) (loại vì x, y là số tự nhiên)
TH2: \(\hept{\begin{cases}x-7=1\\x+y-3=17\end{cases}\Leftrightarrow}\hept{\begin{cases}x=8\\8-3+y=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=8\\5+y=17\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=12\end{cases}}\) (chọn)
Vậy x = 8,y=12
Ta có: \(\left(x+3\right)\left(y-7\right)=17\)
Vì \(x,y\) nguyên nên \(x+3;y-7\) có giá trị nguyên
\(\Rightarrow x+3;y-7\) là các ước của \(17\)
Ta có bảng sau:
Vì \(x,y\) nguyên nên ta được các cặp giá trị \(\left(x;y\right)\) là:
\(\left(-2;24\right);\left(14;8\right);\left(-4;-10\right);\left(-20;6\right)\)
\(Toru\)