Tìm số nguyên dương n để \(5n^{n-1}\)chia hết cho \(3x^3y^{n+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
\(n^2-5n+3=\left(4-n\right)\left(-n+1\right)-1\)
\(\left(4-1\right)\left(-n+1\right)⋮\left(4-n\right)\Rightarrow-1⋮\left(4-n\right)\)
4-n | -1 | 1 |
n | 5 | 3 |
Vậy ..
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
\(n^3-4n^2+5n-1=\left(n-3\right)\left(n^2-n+2\right)+5.\)
\(\frac{n^3-4n^2+5n-1}{n-3}=n^2-n+2+\frac{5}{n-3}\)
Để \(n^3-4n^2+5n-1⋮n-3\Rightarrow5⋮n-3\)
\(\Rightarrow n-3=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-2;2;4;8\right\}\)