K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

\(5^{2012}+5^{2013}+5^{2014}=5^{2012}\left(1+5+5^2\right)=5^{2012}\left(1+5+25\right)=31.5^{2012}\)

Luôn luôn chia hết cho 31 

31 tháng 1 2021

a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)

b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)

3 tháng 2 2021

Ta có:

A= 52014-52013+52012⋮105

A= 5^2011(5^3- 5^2)+5

A=5^2011(125- 25)+5

A= 5^2011. 105

=> A:105​(đpcm)

5^2014-5^2013+5^2012

=5^2012(5^2-5^1+1)

 =5^2012.21 =5^2011.5.21

=5^2011.105

Vậy 5^2014-5^2013+5^2012 chia hết cho 105

chúc bạn học tốt

8 tháng 1 2015

Bạn sai đề rồi phải là 16x+26y chia hết cho 31 chứ:

3x+y chia hết cho 31

=> 27.(3x+y) chia hết cho 31

=> 27.3x+27y chia hết cho 31

=> 81x+27y chia hết cho 31

=> (62+3+16).x+(1+26).y chia hết cho 31

=> 62x+3x+16x+y+26y chia hết cho 31

=> 62x+(3x+y)+(16x+26y) chia hết cho 31

Ta thấy tổng trên chia hết cho 31, mà 62x chia hết cho 31 và 3x+y chia hết cho 31 nên 16x+26y chia hết cho 31.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

6 tháng 3 2021

@Hồ Đức Việt chép mạng cẩn thận nhá

6 tháng 3 2021

6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31

x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31

25 tháng 2 2023

ta có : \(6\left(x+7y\right)=6x+11y+31y\)

\(6x+11y⋮31\) ; \(31y⋮31\)

\(\Rightarrow6\left(x+7y\right)⋮31\)

\(\Rightarrow x+7y⋮31\)