Cho tam giác ABC vuông tại A, đường trung tuyến AM kể MD//AC cách AB tại D. ME//AB cắt AC tại E. a, chứng minh tứ giác ADME là hình chữ nhật b, chứng minh DE//BC c, biết AC = 8 cm,AB = 6 cm. Tính chu vi tứ giác DECB d, tam giác ABC cần điều kiện gì để tứ giác ADME là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi
Hình tự vẽ nhe fen :
a)
Tú giác ADME có:
MD // AB (gt)
ME // AC (gt)
góc A = 90 độ (gt)
=> tứ giác ADME là hình chữ nhật
b)
Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )
Tam giác ADM có:
Góc MDA = 90 độ
=> Tam giác ADM vuông góc tại D
Áp dụng định lí pitago vào tam giác ADM ta có:
\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)
c)
Giả sử Tam giác ABC vuông cân:
=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)
Xét Tam giác ABC có:
ME//AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME=1/2 AC (tc đường trung bình)
Ta lại có:
tam giác ABC có:
MD//AB (gt)
M là trung điểm của BC (gt)
=> MD là đường trung bình của tam giác ABC
=> MD=1/2AB
Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)
=> MD=ME=1/2AB=1/2AC (2)
Từ (1) và (2) => Tứ giác ADME là Hình vuông
=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A
b: S=12cm2
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật
\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)
Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC
Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)
\(\Leftrightarrow\Delta ABC\) vuông cân tại A
Cô gọi ý nhé. Vì bài này cơ bản.
a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.
b) Do ADME là hình chữ nhật nên DE = AM.
Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)
Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.
Vậy DE = 5cm.
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và DE=1/2BC
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
=>DE=10/2=5cm
D là trung điểm của AB
nên \(BD=\dfrac{BA}{2}=\dfrac{6}{2}=3\left(cm\right)\)
E là trung điểm của AC
nên \(EC=EA=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Chu vi tứ giác EDBC là:
5+4+3+10=22(cm0
d: hình chữ nhật ADME trở thành hình vuông khi AD=AE
mà \(AD=\dfrac{AB}{2};AE=\dfrac{AC}{2}\)
nên AB=AC