K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và DE=1/2BC

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

=>DE=10/2=5cm

D là trung điểm của AB

nên \(BD=\dfrac{BA}{2}=\dfrac{6}{2}=3\left(cm\right)\)

E là trung điểm của AC

nên \(EC=EA=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Chu vi tứ giác EDBC là:

5+4+3+10=22(cm0

d: hình chữ nhật ADME trở thành hình vuông khi AD=AE
mà \(AD=\dfrac{AB}{2};AE=\dfrac{AC}{2}\)

nên AB=AC

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

c: Xét tứ giác AMCN có 

E là trung điểm của AC
E là trung điểm của MN

Do đó: AMCN là hình bình hành

mà MA=MC

nên AMCN là hình thoi

21 tháng 12 2022

Hình tự vẽ nhe fen :

a)

Tú giác ADME có:

MD // AB (gt)

ME // AC (gt)

góc A = 90 độ (gt)

=> tứ giác ADME là hình chữ nhật

b)

Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )

Tam giác ADM có:

Góc MDA = 90 độ 

=> Tam giác ADM vuông góc tại D

Áp dụng định lí pitago vào tam giác ADM ta có:

\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)

c)

Giả sử Tam giác ABC vuông cân:

=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)

Xét Tam giác ABC có:

ME//AC (gt)

M là trung điểm của BC (gt)

=> ME là đường trung bình của tam giác ABC

=> ME=1/2 AC (tc đường trung bình)

Ta lại có:

tam giác ABC có:

MD//AB (gt)

M là trung điểm của BC (gt)

=> MD là đường trung bình của tam giác ABC 

=> MD=1/2AB

Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)

=> MD=ME=1/2AB=1/2AC (2)

Từ (1) và (2) => Tứ giác ADME là Hình vuông

=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A

 

22 tháng 12 2022

cảm ơn fen nha

23 tháng 12 2021

b: S=12cm2

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

23 tháng 12 2021

\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật

\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)

Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC

Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)

\(\Leftrightarrow\Delta ABC\) vuông cân tại A 

25 tháng 7 2017

Cô gọi ý nhé. Vì bài này cơ bản.

a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.

b) Do ADME là hình chữ nhật nên DE = AM.

Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)

Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.

Vậy DE = 5cm.