Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Xin lỗi vì mình không biết cách để đưa hình lên đây nhưng bạn có thể tự vẽ mà!!
a) Vì tam giác ABC vuông nên đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
AM=\(\frac{BC}{2}=\frac{10}{2}=5\)
b) Tứ giác ADME là hình chữ nhật hay có 4 góc bằng nhau và bằng 90 độ
c) Giả sử AEMD là hình vuông
=> AE=AD
=>AC=AB
Vậy để AEMD là hình vuông thì tam giác ABC vuông cân
a) theo py ta go thì BC = 10 (tự tính nha)
trung tuyến AM thì
AM = BM = MC = 10/2 = 5
câu b từ nha
b) ADME là hình chữ nhật
A = 90
ADM = 90
=> DM \\ AE
A = MEA = 90
=> DA \\ ME
câu c từ nha
3.
Áp dụng định lý Py-ta-go:
\(AB^2+AC^2=BC^2\\ 6^2+8^2=BC^2\\ 36+64=BC^2\\ 100=BC^2\\ BC=10\left(cm\right)\)
Vì \(AM\)là trung tuyến của \(BC\) nên:
\(AM=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
b,
Xét tứ giác \(ADME\)
có \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\)
\(\Rightarrow\)Tứ giác \(ADME\) là hình chữ nhật
c,
Ta có: \(BM=MC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
Xét \(\Delta AMB\)
Có:
\(AM=MB\left(=5cm\right)\)
\(\Rightarrow\Delta AMB\) là tam giác cân
\(\Rightarrow MD\) là đường trung trực
\(\Rightarrow AD=\dfrac{1}{2}AB\)
Xét \(\Delta AMC\)
Có:
\(AM=MC\left(=5cm\right)\)
\(\Rightarrow\Delta AMC\) là tam giác cân
\(\Rightarrow ME\) là đường trung trực
\(\Rightarrow AE=\dfrac{1}{2}AC\)
Để tứ giác \(ADME\) là hình vuông thì
\(AD=AE\\ \Leftrightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\\ \Rightarrow AB=AC\)
Vậy \(\Delta ABC\) là tam giác vuông cân thì tứ giác \(ADME\) là hình vuông
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC
Cô gọi ý nhé. Vì bài này cơ bản.
a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.
b) Do ADME là hình chữ nhật nên DE = AM.
Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)
Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.
Vậy DE = 5cm.