K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

A B C J K H I

a/ Xét tg BIC có

\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)

\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)

b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"

A B C J D E F

Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.

Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F 

Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF

Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF

(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)

=> JD=JE

Xét tg vuông ADJ và tg vuông AEJ có

ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)

Áp dụng vào bài toán:

Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng

c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng

=> AJ; BK; CH đồng quy tại I

 

 

14 tháng 12 2017

Ta có: EH = EK (chứng minh trên)

Suy ra: E thuộc tia phân giác của ∠(BAC).

Mà E khác A nên AE là tia phân giác của ∠(BAC)

11 tháng 6 2017

Tia phân giác của góc BIC cắt BC ở K. \(\Delta ABC\)\(\widehat{A}=60^0\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0,\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{120^0}{2}=60^0.\)

\(\Delta BIC\)\(\widehat{B_1}+\widehat{C_1}=60^0\Rightarrow\widehat{BIC}=180^0-60^0=120^0.\)

Suy ra \(\widehat{I_1}=60^0,\widehat{I_4}=60^0.\)

IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0.\)

\(\Delta BIE = \Delta BIK\) (g.c.g) => IE = IK (2 cạnh tương ứng).

\(\Delta CID = \Delta CIK\)(g.c.g) => ID = IK (2 cạnh tương ứng).

Do đó ID = IE.

A B C I D E K 60 độ 1 2 3 4 1 1 2 2

16 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.