-3x-61=5
giải ra
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(a,91-5.\left(5+x\right)=61\\ \Rightarrow=5.\left(5+x\right)=30\\ \Rightarrow5+x=6\\ \Rightarrow x=1.\\ b,\left[195-\left(3x-27\right)\right].39=4212\\ \Rightarrow195-\left(3x-27\right)=108\\ \Rightarrow3x-27=87\\ \Rightarrow3x=114\\ \Rightarrow x=38.\)
\(91-5.\left(5+x\right)=61\)
\(\Rightarrow5.\left(5+x\right)=91-61\)
\(\Rightarrow5.\left(5+x\right)=30\)
\(\Rightarrow5+x=\dfrac{30}{5}=6\)
\(\Rightarrow x=6-5=1\)
\(\left[195-\left(3x-27\right)\right].39=4212\)
\(\Rightarrow195-3x+27=\dfrac{4212}{39}=108\)
\(\Rightarrow222-3x=108\)
\(\Rightarrow3x=222-108=114\)
\(\Rightarrow x=\dfrac{114}{3}=38\)
a,91-5(5+x)=61
=>25+5x=91-61=30
=>5x=30-25=5
=>x=1
b,\([\left(x+34\right)-50]\)x2=56
=>(x+34)-50=56:2=28
=>x+34=28+50=78
=>x=78-34=44.
c,1045-\([2015-\left(3x-24\right)]\)=5
=>2015-(3x-24)=1045-5=1040
=>3x-24=2015-1040=975
=>3x=975+24=999
=>x=999:3=333
d,\([195-\left(3x-27\right)]\)x39=4212
=>195-(3x-27)=4212:39=108
=>3x-27=195-108=87
=>3x=87+27=117
=>x=39
e,30-3(x-2)=18
=>30-3x+6=18
=>30-3x=18-6=12
=>3x=30-12=18
=>x=18:3=6
a) \(...\Rightarrow5\left(5+x\right)=91-61=30\)
\(\Rightarrow\left(5+x\right)=30:5=6\Rightarrow x=6-5=1\)
b) \(...\Rightarrow\left(x+34\right)-50=56:2=28\)
\(\Rightarrow\left(x+34\right)=28+50=78\Rightarrow x=78-34=44\)
c) \(...\Rightarrow2015-\left(3x-24\right)=1045-5=1040\)
\(\Rightarrow\left(3x-24\right)=2015-1040=975\)
\(\Rightarrow3x=975+24=999\Rightarrow x=999:3=333\)
d) \(...\Rightarrow195-\left(3x-27\right)=4212:39=108\)
\(\Rightarrow\left(3x-27\right)=195-108=87\)
\(\Rightarrow3x=87+27=114\Rightarrow x=114:3=38\)
e) \(...\Rightarrow3\left(x-2\right)=30-18=12\Rightarrow x-2=12:3=4\)
\(\Rightarrow x=4+2=6\)
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
giải phương trình bất nhất (3x-1)(x+3)= (2-x)(5-3x) các bạn ghi các bước giải ra giúp mik luôn nha !
(3x-1)(x+3)= (2-x)(5-3x)
\(\Leftrightarrow3x^2+9x-x-3=10-6x-5x+3x^2\)
\(\Leftrightarrow3x^2+8x-3-10+11x-3x^2=0\)
\(\Leftrightarrow19x-13=0\)
\(\Leftrightarrow x=\frac{13}{19}\)
Vậy \(x\in\left\{\frac{13}{19}\right\}\)
1: \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>23x+61=2x+61
hay x=0
2: \(\dfrac{6}{x-5}+\dfrac{x+2}{x-8}=\dfrac{18}{\left(x-5\right)\left(8-x\right)}-1\)
\(\Leftrightarrow6x-48+x^2-3x-10=-18-x^2+13x-40\)
\(\Leftrightarrow x^2+3x-58+x^2-13x+58=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0
c: \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
\(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)
\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)
\(\Leftrightarrow x^2=0\)
hay x=0
-3x + 61 = 5
-3x = 5 - 61
-3x = -56
x = 56/3
-3x - 61 = 5
-3x = 5 + 61
-3x = 66
x = 66 : (-3)
x = (-22)