K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

\(A=3^1+3^2+3^3+3^4+...+3^{199}\)

\(3A=3^2+3^3+3^4+3^5+...+3^{200}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{200}\right)-\left(3^1+3^2+3^3+...+3^{199}\right)\)

\(2A=3^{200}-3^1\)

\(A=\frac{3^{200}-3}{2}\)

=))

10 tháng 8 2019

Đặt \(A=3^1+3^2+3^3+...+3^{199}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{200}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3^2+3^3+3^4+..+3^{200}\right)-\left(3^1+3^2+3^3+..+3^{199}\right)\)

\(2A=3^{200}-1\)

\(A=\frac{3^{200}-1}{2}\)

Vậy \(3^1+3^2+3^3+..+3^{199}=\frac{3^{200}-1}{2}\)

24 tháng 12 2017

G=1-3+32-33+34-...-399+3100

3G=3-32+33-34+35-....-3100+3101

3G+G=(3-32+33-34+35-....-3100+3101)+(1-3+32-33+34-...-399+3100)

4G = 3101+1

G=\(\frac{3^{101}+1}{4}\)

22 tháng 9 2020

Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)

=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)

Cộng vế 2 BT trên ta được:

\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)

\(\Leftrightarrow4D=3^{12}+3\)

\(\Rightarrow D=\frac{3^{12}+3}{4}\)

31 tháng 8 2021

\(A=\)\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(4A=-1-\frac{1}{3^{51}}\)

\(A=\frac{-1-\frac{1}{3^{51}}}{4}\)

k cho mik nha

28 tháng 3 2019

3 mũ 11:52 là số nào vậy bạn

28 tháng 3 2019

\(Q=1+3+3^2+3^3+3^4+...+3^{11}\)

\(3Q=3+3^2+3^3+3^4+3^5+...+3^{12}\)

\(3Q-Q=\left(3+3^2+3^3+3^4+3^5+...+3^{12}\right)-\left(1+3+3^2+3^3+3^4+...+3^{11}\right)\)

\(2Q=3^{12}-1\)

\(Q=\frac{3^{12}-1}{2}\)

11 tháng 10 2018

a/

\(3S=3+3^2+3^3+3^4+...+3^{120}\)

\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)

b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13

c/

\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40