Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :
\(S=3+3^2+3^3+.................+3^{1998}\)(1998 số hạng)
\(\Rightarrow S=\left(3+3^2\right)+\left(3^3+3^4\right)+..............+\left(3^{1997}+3^{1998}\right)\)(999 nhóm)
\(\Rightarrow S=12+3^3\left(3+3^2\right)+.................+3^{1997}\left(3+3^2\right)\)
\(\Rightarrow S=12\left(1+3+3^2+.................+3^{1997}\right)\)
\(\Rightarrow S⋮12\rightarrowđpcm\)
b) Ta có :
\(S=3+3^2+3^3+......................+3^{1998}\)
\(\Rightarrow S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.............+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(\Rightarrow S=39+3^4\left(3+3^2+3^3\right)+....................+3^{1996}\left(3+3^2+3^3\right)\)
\(\Rightarrow S=39+3^4.39+................+3^{1996}.39\)
\(\Rightarrow S=39\left(1+3^4+............+3^{1996}\right)\)
\(\Rightarrow S⋮39\rightarrowđpcm\)
1) S = 1 + 2 + 22 + ... + 2100 (có 100 số; 100 chia hết cho 2)
S = (1 + 2) + (22 + 23) + ... + (299 + 2100)
S = 3 + 2.(1 + 2) + ... + 299.(1 + 2)
S = 3 + 2.3 + ... + 299.3
S = 3.(1 + 2 + ... + 299) chia hết cho 3 (đpcm)
2) Cách 1: là nhân S với 2 r` tìm ra S = 2100 - 1 và tìm ra c/s tận cùng của S là 5, chia hết cho 5
Cách 2: nhóm 4 số và lm như trên
C) Để thừa ra số 1 đầu tiên, nhóm 3 số típ theo lại, như thế (lm như câu 1)
KQ: S chia 7 dư 1
a) S = 2 + 22 + 23 + ... + 2100
ta có: (2+22) + (23+24)+...+(299+2100)
chc 3 + chc 3 +....+ chc 3
=> S chia hết cho 3
b) S = 2 + 22 + 23 + ... + 2100
ta có: (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
chc 15 +.......+ chc 15
=> S chia hết cho 15
chc nghĩa là chia hết cho nhak
a/
\(3S=3+3^2+3^3+3^4+...+3^{120}\)
\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)
b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13
c/
\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40