tìm x,biêt
/ x^2 / x+ \(\frac{3}{4}\)/ / = x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biêt x, y , z thoả mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = 10. Tìm x,y,z.
Với mọi \(x\in R\)ta có:
\(\left|x\right|+\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)
Với \(x\ge0\)thì: \(\left|x\right|=x;\left|x+1\right|=x+1;\left|x+2\right|=x+2;\left|x+3\right|=x+3;\left|x+4\right|=x+4\)
\(pt\Leftrightarrow5x+10=6x\Leftrightarrow x=10\)
b. Áp dụng t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=-\frac{7}{3}\)
\(\Rightarrow\frac{x}{2}=-\frac{7}{3}\Leftrightarrow x=-\frac{7}{3}.2=-\frac{14}{3}\)
\(\Rightarrow\frac{y}{5}=-\frac{7}{3}\Leftrightarrow y=-\frac{7}{3}.5=-\frac{35}{3}\)
Vậy \(\hept{\begin{cases}x=-\frac{14}{3}\\y=-\frac{35}{3}\end{cases}}\)
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: \(xyz=192\Leftrightarrow2k.3k.4k=192\)
\(\Leftrightarrow24k^3=192\)
\(\Leftrightarrow k^3=8\)
\(\Leftrightarrow k=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.3=6\)
\(z=2.4=8\)
e, Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{2x}{2}=\frac{3z}{9}\)
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{2x}{2}=\frac{y}{2}=\frac{3z}{9}=\frac{2x-y+3z}{2-2+9}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}\)
\(y=\frac{10}{9}.2=\frac{20}{9}\)
\(z=\frac{10}{9}.3=\frac{10}{3}\)
b,\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{7}{-3}.\)
=>x= \(\frac{7}{-3}.2=-4\frac{2}{3}\)
y, \(\frac{7}{-3}.5=-11\frac{2}{3}\)
( x + 2 )3 - ( 2x + 3 )2 + ( 2x + 3 )( 2x - 3 ) = ( x - 2 )( x2 + 2x + 4 ) - 6x( x + 2 )
⇔ x3 + 6x2 + 12x + 8 - ( 4x2 + 12x + 9 ) + 4x2 - 9 = x3 - 8 - 6x2 - 12x
⇔ x3 + 10x2 + 12x - 1 - 4x2 - 12x - 9 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 - x3 + 6x2 + 12x + 8 = 0
⇔ 12x2 + 12x - 2 = 0
⇔ 2( 6x2 + 6x - 1 ) = 0
⇔ 6x2 + 6x - 1 = 0 (*)
Δ = b2 - 4ac = 62 - 4.6.(-1) = 60
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{60}}{12}=\frac{-3+\sqrt{15}}{6}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{60}}{12}=\frac{-3-\sqrt{15}}{6}\end{cases}}\)
Vậy ...
Đk : x khác 2
Có : x^2-1/|x-2| = x
=> x^2-1 = x.|x-2|
+, Với x < 2 => x^2-1 = x.(2-x) = 2x-x^2
=> x^2-1-(2x-x^2)=0
=> x^2-1-2x+x^2=0
=> 2x^2-2x-1 = 0
=> x=1+\(\sqrt{3}\)/2 (tm) hoặc x=1-\(\sqrt{3}\)/2 (tm)
+, Với x > 2
=> x^2-1 = x.(x-2) = x^2-2x
=> x^2-1-(x^2-2x) = 0
=> x^2-1-x^2+2x=0
=> 2x-1=0
=> 2x=1
=> x=1/2 (loại )
Vậy .............
Tk mk nha
a) \(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(x=\frac{\left(\frac{4}{5}-\frac{1}{2}\right)}{\frac{2}{3}}\)
\(x=\frac{9}{20}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{4}\end{cases}}}\)
Vậy x=-1/4 hoặc x=-5/4
c) \(\left(x+\frac{1}{3}\right)^3=\frac{-1}{8}\)
\(\Leftrightarrow x+\frac{1}{3}=\frac{-1}{8}=\frac{\left(-1\right)^3}{2^3}=\frac{-1}{2}\)
\(x=\frac{-1}{2}-\frac{1}{3}\)
\(x=\frac{-5}{6}\)
\(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}\)
\(\frac{2}{3}x=\frac{3}{10}\)
\(x=\frac{3}{10}:\frac{2}{3}\)
\(x=\frac{9}{20}\)
b) l x + 3/4 l - 1/2 = 0
l x + 3/4 l = 1/2
TH1 : \(x+\frac{3}{4}\le0\) TH2: \(x+\frac{3}{4}\ge0\)
=> \(x+\frac{3}{4}=-\frac{1}{2}\) => \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}\) \(x=\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{5}{4}\) \(x=-\frac{1}{4}\)
c) ( x + 1/3 )3 = ( -1/8 )
( x + 1/3 ) 3 = ( -1/3 )3
=> x + 1/3 = -1/3
x = -1/3 - 1/3
x = -2/3
| x2 | x+ 3/4 = x2
\(\left|x^2\left|x+\frac{3}{4}\right|\right|=x^2\Leftrightarrow x^2\left|x+\frac{3}{4}\right|=x^2\)
+)Nếu x2=0 <=> x=0
+)Nếu x2 khác 0 => \(\left|x+\frac{3}{4}\right|=1\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=-1\\x+\frac{3}{4}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{1}{4}\end{cases}}\)