(3-x)50+(y+\(\frac{1}{3}\))50=0.Giải hộ mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chị ra tay giải cho đứa em cùng tên
50% = 1/2
x/2+2x/3 = x+4
(3x+4x)/6 =x +4
7x/6 - x =4
x/6 = 4
x = 24
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
\(\frac{x-1}{3}+\frac{x-1}{5}+\frac{x-1}{7}+....+\frac{x-1}{99}=0\)
\(\left(x-1\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)=0\)
Vì \(\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)>0\)
\(\Rightarrow x-1=0\)
=> x = 1
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
để (3-x)50+(y+\(\frac{1}{3}\))50=0 \(\Rightarrow\)(3-x)50 = 0 ; ( y + \(\frac{1}{3}\)) = 0
\(\Rightarrow\)3-x = 0 ; y +\(\frac{1}{3}\)= 0
\(\Rightarrow\)x = 3 ; y =\(\frac{-1}{3}\)
Vì
\(\left(3-x\right)^{50};\left(y+\frac{1}{3}\right)^{50}\)là số nguyên dương
\(\Rightarrow\orbr{\begin{cases}\left(3-x\right)^{50}=0\\\left(y+\frac{1}{3}\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\y+\frac{1}{3}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3-0\\y=0-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y=\frac{-1}{3}\end{cases}}\)