(d):y=(m-1)x+4
tìm m để (d) tạo với trục tung và trục hoành 1 tam giác có diện tích là 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do A là giao (d) với trục tung \(\Rightarrow x_A=0\Rightarrow y_A=\left(m-2\right).0+m-1=m-1\)
\(\Rightarrow OA=\left|y_A\right|=\left|m-1\right|\)
Do B là giao (d) với trục hoành
\(\Rightarrow y_B=0\Rightarrow\left(m-2\right)x_B+m-1=0\Rightarrow x_B=-\dfrac{m-1}{m-2}\) (với \(m\ne2\))
\(\Rightarrow OB=\left|x_B\right|=\left|\dfrac{m-1}{m-2}\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\left|m-1\right|.\left|\dfrac{m-1}{m-2}\right|=1\)
\(\Rightarrow\left(m-1\right)^2=2\left|m-2\right|\) (1)
TH1: \(m>2\)
(1) \(\Leftrightarrow m^2-2m+1=2m-4\Rightarrow m^2-4m+5=0\) (vô nghiệm)
TH2: \(m< 2\)
\(\left(1\right)\Leftrightarrow m^2-2m+1=2\left(2-m\right)\Leftrightarrow m^2+2m-3=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\) (thỏa mãn)
điểm cố Định A(0;4) ko phụ thuộc m ; vậy dồ thi phải cắt truc hoành tại B(+-4;0); 4m+4=0=m=-1; -m+4=0=>=m=1
Gọi giao điểm đồ thị hàm số y=mx+4 với trục tung và trục hoành lần lượt là A và B.
Ta có: OA=4
OB=\(\left|\frac{-4}{m}\right|\)
Ta có diện tích tam giác AOB=\(\frac{1}{2}.OA.OB\)
\(\Leftrightarrow8=\frac{1}{2}.4.\left|\frac{-4}{m}\right|\)
\(\Leftrightarrow4=\left|\frac{-4}{m}\right|\)
c giải phương trình trên là ra kết quả...
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)
=>\(m+1=-\dfrac{1}{2}\)
=>\(m=-\dfrac{3}{2}\)
b: Thay x=2 vào y=x+3, ta được:
\(y=2+3=5\)
Thay x=2 và y=5 vào (d), ta được:
\(2\left(m+1\right)-5=5\)
=>2(m+1)=10
=>m+1=5
=>m=5-1=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)
=>A(0;-5)
\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)
Tọa độ B là:
\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)
=>\(B\left(\dfrac{5}{m+1};0\right)\)
\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)
Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)
Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)
=>\(2\left|m+1\right|=5\)
=>|m+1|=5/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)