3x-4y+6xy=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+6xy-4y=5
=>\(3x\left(2y+1\right)-4y-2=3\)
=>\(3x\left(2y+1\right)-2\left(2y+1\right)=3\)
=>\(\left(3x-2\right)\left(2y+1\right)=3\)
=>\(\left(3x-2;2y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(3x;2y\right)\in\left\{\left(3;2\right);\left(5;0\right);\left(1;-4\right);\left(-1;-2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;1\right);\left(\dfrac{5}{3};0\right);\left(\dfrac{1}{3};-2\right);\left(-\dfrac{1}{3};-1\right)\right\}\)
a)x3-6x2+9x=x(x2-6x+9)=x(x-3)2
b)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)
c)x2-x+xy-y=x(x-1)+y(x-1)=(x-1)(x+y)
d)3x2-6xy-75+3y2=3[(x2-2xy+y2)-25]=3[(x-y)2-52]=3(x-y-5)(x-y+5)
e)2x2-5x-7=(2x2+2x)-(7x+7)=2x(x+1)-7(x+1)=(x+1)(2x-7)
f)x4+36=x4+12x2+36-12x2=(x2+6)2-12x2=(x2-\(\sqrt{12}x\)+6)(x2+\(\sqrt{12}x\)+6)
h)x4+4y4=x4+4x2y2+4y2-4x2y2=(x2+2y2)-4x2y2=(x2+2y2-2xy)(x2+2y2+2xy)
`a,x^3 - 3x^2 + 1 - 3x`
`=x^3 + 1 - 3x^2 - 3x`
`=(x^3 + 1) - 3x(x+1)`
`=(x+1)(x^2 - x + 1) - 3x(x+1)`
`=(x+1)(x^2 - x + 1 - 3x)`
`=(x+1)(x^2 - 4x + 1)`
`b,x^2 + 4x - 2xy - 4y + y^2`
`=(x^2 -2xy + y^2) + (4x-4y)`
`=(x-y)^2 + 4(x-y)`
`=(x-y)(x-y+4)`
`c,3x^2 -6xy + 3y^2 - 12z^2`
`=3(x^2 -2xy +y^2 - 4z^2)`
`=3[(x-y)^2 - (2z)^2]`
`=3(x-y-2z)(x-y+2z)`
a: =x^3+1-3x^2-3x
=(x+1)(x^2-x+1)-3x(x+1)
=(x+1)(x^2-x+1-3x)
=(x+1)(x^2-4x+1)
b: =x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
c: =3(x^2-2xy+y^2-4z^2)
=3[(x-y)^2-4z^2]
=3(x-y-2z)(x-y+2z)
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
Ta có:
x2 - 4y2 - 3x - 6xy
= (x - 2y)(x + 2y) - 3x(x + 2y)
= (x - 2y - 3x)(x + 2y)
= (-2x - 2y)(x + 2y)
= -2(x + y)(x + 2y)
a. \(=-4x^5y^3+4x^5y^3-3x^4y^3+x^4y^3-6xy^2\)
\(=0-2x^4y^3-6xy^2\)
\(=-2x^4y^3-6xy^2\)
Bậc của đa thức là 5
Lời giải:
** Bổ sung điều kiện $x,y$ nguyên.
$3x-4y+6xy=7$
$(3x+6xy)-4y=7$
$3x(1+2y)-2(2y+1)=5$
$(2y+1)(3x-2)=5$
Do $x,y$ nguyên nên $2y+1, 3x-2$ cũng nguyên. Do đó ta có các TH sau:
TH1: $3x-2=1; 2y+1=5\Rightarrow x=1; y=2$ (tm)
TH2: $3x-2=-1; 2y+1=-5\Rightarrow x=\frac{1}{3}; y=-3$ (loại)
TH3: $3x-2=5; 2y+1=1\Rightarrow x=\frac{7}{3}; y=0$ (loại)
TH4: $3x-2=-5; 2y+1=-1\Rightarow x=-1; y=-1$ (tm)