Tìm giá trị lớn nhất của A = 2022/(giá trị tuyệt đối của x) + 2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(P=\left(3+x\right)^{2022}+\left|2y-1\right|-5\ge-5\\ P_{min}=-5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{1}{2}\end{matrix}\right.\)
a) \(A=0,5-\left|x-3,5\right|\le0,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3,5\right|=0\Rightarrow x=3,5\)
Vậy Max(A) = 0,5 khi x = 3,5
b) \(C=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(C) = 1,7 khi x = 3,4
P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025
Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.
Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.
Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.
1, Ta có: \(\left|x-2\right|\ge0\)
=>\(B=\left|x-2\right|+34\ge34\)
Dấu "=" xảy ra khi x=2
Vậy GTNN của B=34 khi x=2
2, Ta có: \(\left|x+3\right|\ge0\)
\(\Rightarrow-\left|x+3\right|\le0\)
\(\Rightarrow C=2001-\left|x+3\right|\le2001\)
Dấu "=" xảy ra khi x = -3
Vậy GTLN của C = 2001 khi x=-3
Ta có: \(\left|x\right|>=0\forall x\)
=>\(\left|x\right|+2023>=2023\forall x\)
=>\(\dfrac{2022}{\left|x\right|+2023}< =\dfrac{2022}{2023}\forall x\)
=>\(A< =\dfrac{2022}{2023}\forall x\)
Dấu '=' xảy ra khi |x|=0
=>x=0
Vậy: \(A_{max}=\dfrac{2022}{2023}\) khi x=0
\(A=\dfrac{2022}{\left|x\right|+2023}\)
Ta thấy: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2023}\le\dfrac{1}{2023}\forall x\)
\(\Rightarrow A=\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu \("="\) xảy ra khi: \(x=0\)
Vậy \(Max_A=\dfrac{2022}{2023}\) khi \(x=0\).