K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

\(A=\frac{a}{\sqrt{a+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\left(a,b,c>0\right)\).

\(A=\frac{a^2}{a\sqrt{a^2+8bc}}+\frac{b^2}{b\sqrt{b^2+8bc}}+\frac{c^2}{c\sqrt{c^2+8ca}}\).

Trước hết, ta chứng minh rằng:

\(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(m,n,p>0;x,y,z\in R\right)\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\).

Áp dụng bất đẳng thức \(\left(1\right)\)với \(a,b,c>0\) , ta được:

\(\frac{a^2}{a\sqrt{a^2+8bc}}+\frac{b^2}{b\sqrt{b^2+8ca}}+\frac{c^2}{c\sqrt{c^2+8ab}}\ge\)\(\frac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}}\).

\(\Leftrightarrow A\ge\frac{\left(a+b+c\right)^2}{\sqrt{a}.\sqrt{a^3+8abc}+\sqrt{b}.\sqrt{b^3+8abc}+\sqrt{c}.\sqrt{c^3+8abc}}\left(2\right)\).

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số dương, ta được:

\(\left(\sqrt{a}.\sqrt{a^3+8abc}+\sqrt{b}.\sqrt{b^3+8abc}+\sqrt{c}.\sqrt{c^3+8abc}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\)\(\left[\left(\sqrt{a^3+8abc}\right)^2+\left(\sqrt{b^3+8abc}\right)^2+\left(\sqrt{c^3+8abc}\right)^2\right]\)\(=\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)\left(3\right)\).

Do đó ta cần phải chứng minh: \(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\forall a,b,c>0\).

Ta có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\).

Áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a+b\ge2\sqrt{ab}\left(4\right)\).

Chứng minh tương tự, ta được:

\(b+c\ge2\sqrt{bc}\left(5\right)\).

Chứng minh tương tự, ta được:

\(c+a\ge2\sqrt{ca}\left(6\right)\).

Từ \(\left(4\right),\left(5\right),\left(6\right)\), ta được:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\).

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\).

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\)\(a^3+b^3+c^3+24abc\).

\(\Leftrightarrow\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\).

\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)^4\ge\)\(\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)\left(7\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c>0\).

Từ \(\left(3\right)\)và \(\left(7\right)\), ta được:

\(\left(\sqrt{a}.\sqrt{a^3+8abc}+\sqrt{b}.\sqrt{b^3+8abc}+\sqrt{c}.\sqrt{c^3+8abc}\right)^2\)\(\le\left(a+b+c\right)^4\);.

\(\Leftrightarrow a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\).

\(\Rightarrow\frac{1}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}}\ge\frac{1}{\left(a+b+c\right)^2}\).

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)\(\left(8\right)\).

Từ \(\left(2\right)\)và \(\left(8\right)\), ta được:

\(A\ge1\)(điều phải chứng minh).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c>0\).

Vậy \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)với \(a,b,c>0\).

.

7 tháng 10 2019

Em làm bên olm rồi nhưng lười gõ lại nên sẽ gửi link và chụp màn hình:D Đây là bài IMO 2001 chứ ko tầm thường đâu.

Link gốc: Câu hỏi của IMO 2001 - Toán lớp 9 - Học toán với OnlineMath

6 tháng 5 2020

IMO, 2001

Đặt \(x=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\left(x;y;z\in\left(0;1\right)\right)\)

Để ý rằng \(\frac{a^2}{8bc}=\frac{x^2}{1-x^2};\frac{b^2}{8ac}=\frac{y^2}{1-y^2};\frac{c^2}{8ba}=\frac{z^2}{1-z^2}\)

=> \(\frac{1}{512}=\left(\frac{x^2}{1-x^2}\right)\left(\frac{y^2}{1-y^2}\right)\left(\frac{z^2}{1-z^2}\right)\)

Ta cần chứng minh \(x+y+z\ge1\)với \(x;y;z\in\left(0;1\right)\)và \(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)=512\left(xyz\right)^2\left(1\right)\)

Giả sử ngược lại x+y+z<1

Theo BĐT AM-GM ta có:

\(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)>\left[\left(x+y+z\right)^2-x^2\right]\left[\left(x+y+z\right)^2-y^2\right]\left[\left(x+y+z\right)^2-z^2\right]\)

\(=\left(x+x+y+z\right)\left(y+z\right)\left(x+y+z+y\right)\left(z+x\right)\left(z+z+x+y\right)\left(x+y\right)\)

\(\ge4\left(x^2yz\right)^{\frac{1}{4}}\cdot2\left(yz\right)^{\frac{1}{2}}\cdot4\left(y^2zx\right)^{\frac{1}{4}}\cdot2\left(xz\right)^{\frac{1}{2}}\cdot4\left(z^2xy\right)^{\frac{1}{4}}\cdot2\left(xy\right)^{\frac{1}{2}}=512\left(xyz\right)^2\)

Điều này mâu thuẫn với (1)

Vậy điều phản chứng là sai và ta có đpcm

20 tháng 5 2017

Ace Legona Bạn mà ko giải được thì còn ai giải đc nữa mà hỏi

31 tháng 5 2021

Áp dụng bất đẳng thức Holder ta có:

\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).

Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc

Không Holder thì Svacxo nha :v

Áp dụng BĐT Svacxo ta có :

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)

Ta có sẽ đi chứng minh :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

Thật vậy theo Bunhiacopxki có :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)

\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

Ta lại đi chứng minh :

\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)

\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )

Do đó nhân vào ta có đpcm.

 

22 tháng 2 2022

Để ý theo bất đẳng thức Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\) sẽ nhỏ hơn hoặc bằng với:

\(\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\)

Mặt khác cũng theo bất đẳng thức Bunhiacopxki ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\)

\(=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)sẽ nhỏ hơn hoặc bằng với:

\(\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3\right)+24abc}\)

Ta chứng minh được \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)nên ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2\le\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a+b+c\right)^2\)

Hay \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)

Vậy bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)

12 tháng 11 2019

1/ Không mất tính tổng quát, giả sử \(a\ge b\ge c\text{ và }x\ge y\ge z\)

Ta sẽ chứng minh \(ax+by+cz\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)\)(Thấy giông giống BĐT Chebyshev nhưng không biết có phải không nên ko dám áp dụng, chứng minh cho chắc:D)

\(\Leftrightarrow3ax+3by+3cz\ge\left(a+b+c\right)\left(x+y+z\right)\)

\(\Leftrightarrow2\left(ax+by+cz\right)\ge a\left(y+z\right)+b\left(z+x\right)+c\left(x+y\right)\)

\(\Leftrightarrow\left(2x-y-z\right)a+\left(2y-z-x\right)b+\left(2z-x-y\right)c\ge0\)

\(\Leftrightarrow\left(2x-y-z\right)a-\left[\left(2x-y-z\right)+\left(2z-x-y\right)\right]b+\left(2z-x-y\right)c\ge0\)

\(\Leftrightarrow\left(2x-y-z\right)\left(a-b\right)+\left(2z-x-y\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(a-b\right)+\left(x-z\right)\left(a-c\right)+\left(y-z\right)\left(b-c\right)\ge0\) (Đúng do giả sử)

Như vậy: \(VT\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\)

\(\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\frac{\left(a+b+c\right)^2\left(x+y+z\right)^2}{9}}=\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)=VP\)

Ta có đpcm.

Is that true? Em không chắc ở cái bổ đề ban đầu, khi biến đổi có thể làm lộn, nhưng em lại ngại làm kỹ nên em đã làm tắt:v

13 tháng 11 2019

Bài 1 nếu tự nhiên ép \(x\ge y\ge z \) đồng thời\(a\ge b \ge c\) thì lời giải rất vô duyên. Có thể làm cách khá như sau

Nếu đặt \(t=\sqrt{\frac{x^2+y^2+z^2}{a^2+b^2+c^2}}\) và giả sử \(\left(x,y,z\right)=\left(tp,tq,tr\right)\) thì ta có \(a^2+b^2+c^2=p^2+q^2+r^2\)

Khi đó cần cm \(ap+bq+cr+a^2+b^2+c^2\ge\frac{2}{3}\left(a+b+c\right)\left(p+q+r\right)\)

\(\Leftrightarrow\frac{4}{3}\left(a+b+c\right)\left(p+q+r\right)\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2\left(\text{*}\right)\)

Dùng bdt \(ab\le\frac{\left(a+b\right)^2}{4}\) và \(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\) ta có:

\(VT\left(\text{*}\right)\le\frac{\left(a+b+c+p+q+r\right)^2}{3}\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2=VP\left(\text{*}\right)\)

20 tháng 4 2020

Đặt \(P=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\)

\(=\frac{a^2}{a\sqrt{a^2+8bc}}+\frac{b^2}{b\sqrt{b^2+8ca}}+\frac{c^2}{c\sqrt{c^2+abc}}\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\)(Theo bất đẳng thức Bunhiacopxki dạng phân thức)

Ta có: 

Suy ra 

Ta cần chứng minh \(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\ge6abc\)

Đúng vì \(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^3b^3c^3}=3abc\)\(ab^2+bc^2+ca^2\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Từ đó suy ra \(\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\le\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\ge1\)

Vậy \(=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\ge1\)

Đẳng thức xảy ra khi a = b = c

11 tháng 9 2019

Đặt \(u=\frac{bc}{a^2};v=\frac{ca}{b^2};w=\frac{ab}{c^2}\). BĐT quy về:

\(\frac{1}{\sqrt{8u+1}}+\frac{1}{\sqrt{8v+1}}+\frac{1}{\sqrt{8w+1}}\ge1\) với uvw = 1

Đặt \(\sqrt{8u+1}=x;\sqrt{8v+1}=y;\sqrt{8w+1}=z\)

Ta phải chứng minh \(xy+yz+zx\ge xyz\) (*) với \(\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)=512\)

Ta có: \(\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)=512\)

\(\Leftrightarrow\Sigma x^2+x^2y^2z^2=513+\Sigma x^2y^2\)

(*) \(\Leftrightarrow\Sigma x^2y^2+2xyz\left(x+y+z\right)\ge x^2y^2z^2\)'

\(\Leftrightarrow\Sigma x^2+2xyz\left(x+y+z\right)\ge513\)

Và rất đơn giản bởi AM-GM, điều đó hiển nhiên đúng:

Có:\(\left(8v+1\right)\left(8u+1\right)\left(8w+1\right)\ge729\sqrt[9]{u^8v^8w^8}=729\)

Nên  \(xyz=\sqrt{\left(8v+1\right)\left(8u+1\right)\left(8w+1\right)}\)

\(\ge\sqrt{729}=27\). Và \(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}=3.9=27;a+b+c\ge9\)

P/s: Bài dài quá em chẳng muốn check lại. Có sai chỗ nào ko ta? Bài này lúc đầu em định uct nhưng ko ra.

11 tháng 9 2019

Một BĐT mạnh (tổng quát) hơn!

Cho a, b, c > 0 và \(n\ge1\). Chứng minh:

\(\Sigma\frac{a^n}{\sqrt{a^2+8bc}}\ge\frac{1}{3}\left(a^{n-1}+b^{n-1}+c^{n-1}\right)\)