\(ab+ac+bc\ne0\).CMR

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

NV
20 tháng 6 2020

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)

1 tháng 3 2020

Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)

=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

Khi đó

\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)

Áp dụng BĐT buniacoxki  ta có :

\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)

Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)

=> \(VT\le VP\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=can(3)

2 tháng 3 2020

hay quá 

22 tháng 2 2022

Để ý theo bất đẳng thức Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\) sẽ nhỏ hơn hoặc bằng với:

\(\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\)

Mặt khác cũng theo bất đẳng thức Bunhiacopxki ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\)

\(=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)sẽ nhỏ hơn hoặc bằng với:

\(\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3\right)+24abc}\)

Ta chứng minh được \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)nên ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2\le\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a+b+c\right)^2\)

Hay \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)

Vậy bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)