Tính
\(\sqrt{7-4\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\frac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{8+2\sqrt{7}}{6+\sqrt{8+2\sqrt{7}}}+\frac{8-2\sqrt{7}}{6-\sqrt{8-2\sqrt{7}}}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{6+\sqrt{7}+1}+\frac{\left(\sqrt{7}-1\right)^2}{6-\sqrt{7}+1}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{\sqrt{7}\left(\sqrt{7}+1\right)}+\frac{\left(\sqrt{7}-1\right)^2}{\sqrt{7}\left(\sqrt{7}-1\right)}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\sqrt{7}+1}{\sqrt{7}}+\frac{\sqrt{7}-1}{\sqrt{7}}=\frac{2\sqrt{7}}{\sqrt{7}}=2\)
=> B = \(\sqrt{2}\)
\(\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)
\(\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.2+2^2}=\sqrt{\left(\sqrt{7}-2\right)^2}=\left|\sqrt{7}-2\right|=\sqrt{7}-2\)
\(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{5}+2\)
\(\sqrt{11-4\sqrt{7}}=\sqrt{7}-2\)
\(A=\dfrac{\sqrt[4]{7\sqrt[3]{54}+15\sqrt[3]{128}}}{\sqrt[3]{\sqrt[4]{32}}+\sqrt[3]{9\sqrt[4]{162}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{7\sqrt[3]{3^3.2}+15\sqrt[3]{4^3.2}}}{\sqrt[3]{\sqrt[4]{2^4.2}}+\sqrt[3]{9\sqrt[4]{3^4.2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{7.3\sqrt[3]{2}+15.4\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{9.3\sqrt[4]{2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{21\sqrt[3]{2}+60\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{3^3\sqrt[4]{2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{81\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}=\dfrac{3\sqrt[4]{\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}\)
\(\Leftrightarrow A=\dfrac{3}{\sqrt[3]{2}+3}\)
g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)
h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)
l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)
j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)
\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
\(a,\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)
\(=\dfrac{9}{3\left(\sqrt{7}-4\right)}+\dfrac{\left(\sqrt{7}-4\right)\left(\sqrt{7}+4\right)}{3\left(\sqrt{7}-4\right)}\)
\(=\dfrac{9+7-16}{3\left(\sqrt{7}-4\right)}\)
\(=0\)
\(b,\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\right]\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\right)\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\sqrt{3}-\sqrt{2}\right)\cdot2\sqrt{3}\)
\(=\sqrt{3}\cdot2\sqrt{3}\)
\(=6\)
#\(Toru\)
a) A=12\(\sqrt{3}\)
B= \(\frac{8}{3}\)
c) C= 1
d)...
Chúc bạn học tốt nha ^^!
3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)
\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)
\(\sqrt{7-4\sqrt{3}}\)=\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{\left(2-\sqrt{3}\right)^2}\)= \(\left|2-\sqrt{3}\right|\)=\(2-\sqrt{3}\)
k mình nha bn
= \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
=\(\left|2-\sqrt{3}\right|\)
=\(2-\sqrt{3}\)( Vì \(2>\sqrt{3}\))