\(giai\) \(phuong\)trinh \(\sqrt{1-x}-\sqrt{2+x}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1; Khi m=1 thì pt sẽ là \(\sqrt{x+1}=x+1\)
=>(x+1)^2=(x+1)
=>x(x+1)=0
=>x=0hoặc x=-1
2: \(\Leftrightarrow x+1=\left(x+m\right)^2\)
=>x^2+2mx+m^2-x-1=0
=>x^2+x(2m-1)+m^2-1=0
Δ=(2m-1)^2-4(m^2-1)
=4m^2-4m+1-4m^2+4
=-4m+5
Để pt có 2 nghiệm pb thì -4m+5>0
=>-4m>-5
=>m<5/4
Để pt có nghiệm kép thì 5-4m=0
=>m=5/4
Để pt vô nghiệm thì -4m+5<0
=>m>5/4
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
Em làm bừa thôi, mới học dạng này .
ĐK: \(1\le x\le7\)
Đặt \(\sqrt{6}\ge a=\sqrt{7-x}\ge0;\sqrt{6}\ge b=\sqrt{x-1}\ge0\)
PT<=>\(b^2+2a=2b+ab\left(1\right)\)
(1) \(\Leftrightarrow\left(a-b\right)\left(2-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\b=2\end{cases}}\). Nếu a = b thì \(\sqrt{7-x}=\sqrt{x-1}\Leftrightarrow7-x=x-1\Leftrightarrow x=4\) (TM)
Nếu b = 2 thì \(\sqrt{x-1}=2\Leftrightarrow x=5\left(TM\right)\)
Vậy...
\(DK:x\ge0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)
\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)
\(\Leftrightarrow x=1\)
Vay nghiem cua PT la \(x=1\)
ĐK: x>= -1/3
Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)
Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)
Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk
Vậy x=1
Ta có thể dùng cô si chăng?
ĐK: \(x\ge-\frac{1}{3}\)
\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)
\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)
Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:
\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)
Vậy...
Is it true??
\(\Leftrightarrow\dfrac{x+3+x-1+2\sqrt{\left(x+3\right)\left(x-1\right)}}{x+3-x+1}=\dfrac{13-x^2}{4}\)
\(\Leftrightarrow2x+2+2\sqrt{\left(x+3\right)\left(x-1\right)}=13-x^2\)
\(\Leftrightarrow\sqrt{4\left(x+3\right)\left(x-1\right)}=13-x^2-2x-2=-x^2-2x+11\)
=>\(x\simeq1,37\)
DDK : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)
\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)
\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)
\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)
\(\Leftrightarrow11x^2-10x-1=0\)
\(\Leftrightarrow11x^2-11x+x-1=0\)
\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)
Giải nốt nha .
bình 2 vế
\(\Leftrightarrow\left(\sqrt{1-x}-\sqrt{2+x}\right)^2=1\Leftrightarrow1-x-2\sqrt{\left(1-x\right)\left(2+x\right)}+2+x=1\)
\(\Leftrightarrow3-2\sqrt{\left(1-x\right)\left(2+x\right)}=1\Leftrightarrow2\sqrt{\left(1-x\right)\left(2+x\right)}=2\)
\(\Leftrightarrow\sqrt{-x^2-x+2}=1\Leftrightarrow-x^2-x+2=1\Leftrightarrow-x^2-x+1=0\)
\(\Leftrightarrow-\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{5}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=-\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{5}-1}{2}\\x=\frac{\sqrt{5}-1}{2}\end{cases}}\)