Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge2\)
\(\sqrt{x-1}=1+\sqrt{x-2}\)
<=>\(x-1=1+x-2+2\sqrt{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loại\right)\\x=2\left(tm\right)\end{cases}}}\)
b) ĐK: x>=10/3
Đặt:\(\sqrt{3x-10}=t\left(t\ge0\right)\Rightarrow3x=t^2+10\)
\(x^2+3\left(t^2+10\right)+20=2t\)
\(\Leftrightarrow x^2+3t^2-2t+50=0\)
\(\Leftrightarrow x^2+3\left(t^2-2.t.\frac{1}{3}+\frac{1}{9}\right)-\frac{1}{3}+50=0\)
<=>\(x^2+3\left(t-\frac{1}{3}\right)^2+\frac{149}{3}=0\)phương trình voo ngiệm
vào trong câu hỏi khác của mình rồi trả lời với mình xin các cậu đúng cho 3 k
đề sai r,,,,,,cái kia phải là x^2-x+1 chứ
nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok
\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại)
Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại)
Vậy Pt có nghiệm (1;-1)
đặt t = \(\sqrt[3]{2x-1}\) nên 1 = 2x - t3.
pt: x3 + 2x - t3 = 2t hay (x3 - t3) +2(x - t) = 0.
hay (x - t)(x2 + xt + t2 + 2) = 0.
* nếu x - t = 0 hay x = \(\sqrt[3]{2x-1}\)(tự giải nhé).
* x2 + xt + t2 + 2 = 0. (1)
vì x \(\ge\)\(\frac{1}{2}\)(đk) và t \(\ge\) 0 nên (1) vô nghiệm.
vậy ....
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
bình 2 vế
\(\Leftrightarrow\left(\sqrt{1-x}-\sqrt{2+x}\right)^2=1\Leftrightarrow1-x-2\sqrt{\left(1-x\right)\left(2+x\right)}+2+x=1\)
\(\Leftrightarrow3-2\sqrt{\left(1-x\right)\left(2+x\right)}=1\Leftrightarrow2\sqrt{\left(1-x\right)\left(2+x\right)}=2\)
\(\Leftrightarrow\sqrt{-x^2-x+2}=1\Leftrightarrow-x^2-x+2=1\Leftrightarrow-x^2-x+1=0\)
\(\Leftrightarrow-\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{5}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=-\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{5}-1}{2}\\x=\frac{\sqrt{5}-1}{2}\end{cases}}\)