giải phương trình
\(\sqrt{7-\sqrt{7-x}}=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: `1 <=x <=7`.
Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.
Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.
`<=> b^2 + 2a = 2b + ab.`
`<=> b(b-2) = a(b-2)`
`<=> (b-a)(b-2) = 0`
`<=> a =b` hoặc `b = 2.`
`@ a = b => 7 - x = x - 1`
`<=> 8 = 2x <=> x = 4`.
`@ b = 2 => sqrt(x-1) = 2`
`<=> x - 1 = 4`
`<=> x = 5`.
Vậy `x = 4` hoặc `x = 5`.
\(\text{ĐKXĐ:}1\le x\le7\)
PT đã cho tương đương với:
\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
ĐK
\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)
Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)
Bình phương 2 vế PT
\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)
\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)
BP 3 vế PT
\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)
\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)
\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)
Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé
\(ĐK:-3\le x\le22\\ PT\Leftrightarrow x+3=-x+71-14\sqrt{22-x}\\ \Leftrightarrow68-2x=14\sqrt{22-x}\\ \Leftrightarrow34-x=7\sqrt{22-x}\\ \Leftrightarrow1156-68x+x^2=1078-49x\\ \Leftrightarrow x^2-19x+78=0\\ \Leftrightarrow\left(x-13\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=13\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+7}=b\\\sqrt{x}=a\ge0\end{matrix}\right.\) \(\Rightarrow b^3-a^2=7\)
Ta được hệ:
\(\left\{{}\begin{matrix}b=1+a\\b^3-a^2=7\end{matrix}\right.\)
Thế trên xuống dưới:
\(\left(1+a\right)^3-a^2=7\)
\(\Rightarrow a^3+2a^2+3a-6=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+3a+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+3a+6=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)
ĐKXĐ: \(0\le x\le7\)
\(\sqrt{7-\sqrt{7-x}}=x\Leftrightarrow7-\sqrt{7-x}=x^2\Leftrightarrow\sqrt{7-x}=7-x^2\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\7-x=49-14x^2+x^4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^4-14x^2+x+42=0\end{cases}\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^4+x^3-7x^2-x^3-x^2+7x-6x^2-6x+42=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^2\left(x^2+x-7\right)-x\left(x^2+x-7\right)-6\left(x^2+x-7\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\\left(x^2+x-7\right)\left(x^2-x-6\right)=0\end{cases}}\)
\(\Leftrightarrow x=\frac{-1+\sqrt{29}}{2}\)