K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

ĐKXĐ: \(0\le x\le7\)

\(\sqrt{7-\sqrt{7-x}}=x\Leftrightarrow7-\sqrt{7-x}=x^2\Leftrightarrow\sqrt{7-x}=7-x^2\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\7-x=49-14x^2+x^4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^4-14x^2+x+42=0\end{cases}\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^4+x^3-7x^2-x^3-x^2+7x-6x^2-6x+42=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\x^2\left(x^2+x-7\right)-x\left(x^2+x-7\right)-6\left(x^2+x-7\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{7}\le x\le\sqrt{7}\\\left(x^2+x-7\right)\left(x^2-x-6\right)=0\end{cases}}\)

\(\Leftrightarrow x=\frac{-1+\sqrt{29}}{2}\)

Đk: `1 <=x <=7`.

Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.

Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.

`<=> b^2 + 2a = 2b + ab.`

`<=> b(b-2) = a(b-2)`

`<=> (b-a)(b-2) = 0`

`<=> a =b` hoặc `b = 2.`

`@ a = b => 7 - x = x - 1`

`<=> 8 = 2x <=> x = 4`.

`@ b = 2 => sqrt(x-1) = 2`

`<=> x - 1 = 4`

`<=> x = 5`.

Vậy `x = 4` hoặc `x = 5`.

\(\text{ĐKXĐ:}1\le x\le7\)

PT đã cho tương đương với:

\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

20 tháng 7 2023

ĐK

\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)

Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)

Bình phương 2 vế PT

\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)

\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)

BP 3 vế PT

\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)

\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)

\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)

Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé

 

11 tháng 8 2016

Sai đề r bạn ơi !!!

18 tháng 5 2018

https://olm.vn/hoi-dap/question/595884.html

NV
7 tháng 1 2021

ĐKXĐ: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+7}=b\\\sqrt{x}=a\ge0\end{matrix}\right.\) \(\Rightarrow b^3-a^2=7\)

Ta được hệ:

\(\left\{{}\begin{matrix}b=1+a\\b^3-a^2=7\end{matrix}\right.\)

Thế trên xuống dưới:

\(\left(1+a\right)^3-a^2=7\)

\(\Rightarrow a^3+2a^2+3a-6=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+3a+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+3a+6=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow x=1\)

8 tháng 9 2018

cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé

8 tháng 9 2018

ý bạn là sao ?