K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

\(\dfrac{2}{3}-\left|x-2,4\right|=\dfrac{1}{2}\)

\(\left|x-2,4\right|=\dfrac{2}{3}-\dfrac{1}{2}\)

\(\left|x-2,4\right|=\dfrac{1}{6}\)

*) Với \(x\ge2,4\) ta có:

\(x-2,4=\dfrac{1}{6}\)

\(x=\dfrac{1}{6}+2,4\)

\(x=\dfrac{77}{30}\) (nhận)

*) Với \(x< 2,4\) ta có:

\(x-2,4=-\dfrac{1}{6}\)

\(x=-\dfrac{1}{6}+2,4\)

\(x=\dfrac{67}{30}\) (nhận)

Vậy \(x=\dfrac{67}{30};x=\dfrac{77}{30}\)

17 tháng 3 2022

\(a,5,2x+7\dfrac{2}{5}=6\dfrac{3}{4}\\ \Rightarrow\dfrac{26}{5}x+\dfrac{37}{5}=\dfrac{27}{4}\\ \Rightarrow\dfrac{26}{5}x=-\dfrac{13}{20}\\ \Rightarrow x=-\dfrac{1}{8}\\ b,2,4:\left(\dfrac{-1}{2}-x\right)=1\dfrac{3}{5}\\ \Rightarrow\dfrac{12}{5}:\left(\dfrac{-1}{2}-x\right)=\dfrac{8}{5}\\ \Rightarrow\dfrac{-1}{2}-x=\dfrac{3}{2}\\ \Rightarrow x=-2\)

20 tháng 9 2023

a, \(\dfrac{3}{7}\)\(x\) - 0,4 = - \(\dfrac{17}{35}\)

    \(\dfrac{3}{7}\)\(x\)         = - \(\dfrac{17}{35}\) + 0,4

     \(\dfrac{3}{7}\)\(x\)       = - \(\dfrac{3}{35}\)

        \(x\)       = - \(\dfrac{3}{35}\)\(\dfrac{3}{7}\)

        \(x\)       = - \(\dfrac{1}{5}\)

20 tháng 9 2023

b, 0,2.(\(x\) - 3) +2,4 = 10

    0,2.(\(x\) - 3)          = 10 - 2,4

    0,2.(\(x\) - 3)          = 7,6

           \(x\) - 3            = 7,6:0,2

           \(x\) - 3            = 38

            \(x\)                = 38 + 3

             \(x\)                = 41

10 tháng 12 2022

| x - 2,4| = \(\dfrac{1}{2}\)

\(\left[{}\begin{matrix}x-2,4=\dfrac{1}{2}(đk:x>2,4)\\x-2,4=-\dfrac{1}{2}(đk:x< 2,4)\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{1}{2}+2,4\\x=-\dfrac{1}{2}+2,4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2,9(tm)\\x=1,9(tm)\end{matrix}\right.\)

vậy \(x\in\) { 1,9 ; 2,9}

 

10 tháng 12 2022

x=2/9

bài 1 ( 2 điểm ):  a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\) b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\) bài 2: (1 điểm): tính \(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\) bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà...
Đọc tiếp

bài 1 ( 2 điểm ): 

a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\)

b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\)

bài 2: (1 điểm): tính

\(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\)

bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà tổng của 2 chữ số đó bằng chữ số ở phần nguyên. Hãy tính tổng các chữ số vừa tìm được.

bài 4: 1 đoàn tàu hỏa dài 85 m qua cầu với vận tốc 54km/giờ. Từ lúc đầu tàu lên cầu đnế lúc toa cuối cùng qua khỏi cầu mất hết 1 phút 15 giây. Hỏi cầu dài bao nhiêu mét?

bài 5: một mảnh vườn hình thang có đáy bé là 36,45 m .Đáy lớn bằng 4/3 đáy bé, chiều cao bằng 2/3 tổng hai đáy. Tính diện tích mảnh vườn đó

bài 6:có bao nhiêu hình chữ nhật trong hình vẽ sau?

bài 7: (1 điểm):

a) điền số thích hợp vào dấu? và giải thích quy luật: 

4, 5, 7, 11,19, ?, ? ....

trong hình vẽ dưới đây có 8 hình vuông nhỏ. Hỏi có bao nhiêu điểm A đến điểm C, men theo cạnh các hình vuông nhỏ, sao cho mỗi đường đều không qua đểm B và có độ dài gấp 6 lần độ dài cạnh hình vuông nhỏ. 

A B C

1
10 tháng 6 2023

Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)

\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)

\(\dfrac{138}{30}< X< \dfrac{200}{3}\)

\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)

Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)

\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)

\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)

\(\Rightarrow X=\dfrac{105381}{52}\)

24 tháng 12 2023

a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=>\(x\in\left\{16;4;25;1;49\right\}\)

b: loading...

loading...

8 tháng 5 2022

Xét hpt \(\left\{{}\begin{matrix}\dfrac{x}{y}+2.\dfrac{y}{x}=3\left(1\right)\\2x^2-3y=-1\left(2\right)\end{matrix}\right.\) (đkxđ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\))

Từ (1) \(\Leftrightarrow\dfrac{x^2+2y^2}{xy}=3\Rightarrow x^2+2y^2=3xy\Leftrightarrow x^2-3xy+2y^2=0\)\(\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

Xét trường hợp \(x=y\), thay vào (2), ta có \(2x^2-3x=-1\Leftrightarrow2x^2-3x+1=0\) (3)

pt (3) có tổng các hệ số bằng 0 nên pt này có 2 nghiệm \(\left[{}\begin{matrix}x_1=1\\x_2=\dfrac{1}{2}\end{matrix}\right.\)(nhận)

Nếu \(x=1\Rightarrow y=1\) (vì \(x=y\)) (nhận)

Nếu \(x=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\) (nhận)

Vậy ta tìm được 2 nghiệm của hpt đã cho là \(\left(1;1\right)\) và \(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)

Xét trường hợp \(x=2y\), thay vào (2), ta có \(2.\left(2y\right)^2-3y=-1\Leftrightarrow8y^2-3y+1=0\) (4)

pt (4) có \(\Delta=\left(-3\right)^2-4.8.1=-23< 0\) nên pt này vô nghiệm.

Vậy hpt đã cho có tập nghiệm \(S=\left\{\left(1;1\right);\left(\dfrac{1}{2};\dfrac{1}{2}\right)\right\}\)

13 tháng 4 2023

 Áp dụng BĐT Cauchy cho 3 số thực dương \(xy,yz,zx\), ta có \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\). Do \(xy+yz+zx=3xyz\) nên\(3xyz\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow3\sqrt[3]{\left(xyz\right)^2}\left(\sqrt[3]{xyz}-1\right)\ge0\) \(\Leftrightarrow\sqrt[3]{xyz}\ge1\) \(\Leftrightarrow xyz\ge1\)

ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}xy=yz=zx\\xy+yz+zx=3xyz\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Ta có \(\dfrac{x}{1+y^2}=\dfrac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy^2}{2y}\)\(=x-\dfrac{xy}{2}\)

Tương tự, ta có \(\dfrac{y}{1+z^2}\ge y-\dfrac{yz}{2}\) và \(\dfrac{z}{1+x^2}\ge z-\dfrac{zx}{2}\). Từ đó suy ra \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge x+y+z-\dfrac{xy+yz+zx}{2}\) \(=x+y+z-\dfrac{3}{2}xyz\) . Từ đây suy ra \(Q\ge x+y+z\ge\sqrt[3]{xyz}\ge1\). ĐTXR \(\Leftrightarrow x=y=z=1\)

Vậy GTNN của \(Q\) là \(1\) đạt được khi \(x=y=z=1\)

14 tháng 4 2023

 Dạ thưa thầy, chỗ kia con sửa là \(Q\ge x+y+z\ge3\sqrt[3]{xyz}\ge3\) ạ. GTNN của Q là 3 khi \(x=y=z=1\)

20 tháng 9 2023

\(a,\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{2}{3}x-\dfrac{1}{2}x-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\left(\dfrac{2}{3}-\dfrac{1}{2}\right)-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\dfrac{1}{6}=-\dfrac{11}{15}\\ \Rightarrow x=-\dfrac{22}{5}\\ b,\dfrac{1}{3}x+\dfrac{2}{5}.\left(x+1\right)=0\\ \Rightarrow\dfrac{1}{3}x+\left(x+1\right)=-\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{2}{5}-\left(x+1\right)\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{7}{5}-x\\ \Rightarrow\dfrac{1}{3}.2x=-\dfrac{7}{5}\\ \Rightarrow2x=-\dfrac{21}{5}\\ \Rightarrow x=-\dfrac{21}{10}.\)

27 tháng 9 2023

\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}=\dfrac{7}{2}x.\left(-\dfrac{1}{3}\right)\\ \Rightarrow\dfrac{1}{2}x+\dfrac{5}{2}+\dfrac{7}{2}x=-\dfrac{1}{3}\\ \Rightarrow\left(\dfrac{1}{2}+\dfrac{7}{2}\right)x+\dfrac{5}{2}=-\dfrac{1}{3}\\ \Rightarrow4x=-\dfrac{17}{6}\\ \Rightarrow x=-\dfrac{17}{24}.\)

27 tháng 9 2023

\(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{1}{2}x-3\dfrac{1}{2}x=-\dfrac{1}{3}-2\dfrac{1}{2}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{7}{2}\right)x=-\dfrac{1}{3}-\dfrac{5}{2}\\ \Rightarrow\dfrac{-6}{2}x=-\dfrac{17}{6}\\ \Rightarrow-3x=-\dfrac{17}{6}\\ \Rightarrow x=\left(-\dfrac{17}{6}\right):\left(-3\right)\\ \Rightarrow x=\dfrac{17}{18}\)