B2: Tam giác ABC cân ở A. AB=8, BC=10. Lấy D thuộc AC. Gọi E,F lần lượt là trung điểm AD và DC. M là trung điểm BD
a) chu vi tam giác MEF =?
b)AF=\(\dfrac{AB+AD}{2}\)
giúp vs ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABD có E,I lần lượt là trung điểm của BA,BD
=>EI là đường trung bình của ΔABD
=>EI//AD và EI=AD/2
EI//AD
D\(\in\)AC
Do đó: EI//AC
Xét ΔBDC có
I,M lần lượt là trung điểm của BD,BC
=>IM là đường trung bình của ΔBDC
=>IM//DC và IM=DC/2
IM//DC
D\(\in\)AC
Do đó: IM//AC
IM//AC
EI//AC
IM,EI có điểm chung là I
Do đó: E,I,M thẳng hàng
Xét ΔBEC có
M,K lần lượt là trung điểm của CB,CE
=>MK là đường trung bình của ΔBEC
=>MK//EB và MK=EB/2
MK//EB
E\(\in\)AB
Do đó: MK//AB
Xét ΔACE có
D,K lần lượt là trung điểm của CA,CE
=>DK là đường trung bình của ΔAEC
=>DK//AE và DK=AE/2
DK//AE
E\(\in\)AB
Do đó: DK//AB
DK//AB
MK//AB
DK,MK có điểm chung là K
Do đó: D,M,K thẳng hàng
b: MI=DC/2
EI=AD/2
mà AD=DC
nên MI=EI
=>I là trung điểm của ME
MK=BE/2
DK=AE/2
mà BE=AE
nên MK=DK
=>K là trung điểm của DM
Xét ΔMED có
I,K lần lượt là trung điểm của ME,MD
=>IK là đường trung bình
=>IK//ED và IK=ED/2
c: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{BC}{2}\)
\(IK=\dfrac{ED}{2}=\dfrac{BC}{2}:2=\dfrac{BC}{4}=\dfrac{4}{4}=\dfrac{4}{4}=1\left(cm\right)\)
Bài 1:
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
Suy ra: Hai đường chéo AB và DE cắt nhau tại trung điểm của mỗi đường
mà AB cắt DE tại I
nên I là trung điểm của BA
hay IA=IB
a: Xét ΔBAD có
F là trung điểm của BD
E là trung điểm của AD
Do đó: FE là đường trung bình của ΔBAD
Suy ra: \(FE=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Xét ΔDBC có
F là trung điểm của BD
FI//BC
Do đó: I là trung điểm của DC
Xét ΔDBC có
F là trung điểm của BD
I là trung điểm của DC
Do đó: FI là đường trung bình của ΔDBC
Suy ra: \(FI=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Ta có: \(EI=ED+DI\)
\(=\dfrac{AC}{2}=4\left(cm\right)\)
Bài 1 :
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
a: ΔABC cân tại A
=>AB=AC
mà AB=8
nên AC=8
Xét ΔDAB có
E,M lần lượt là trung điểm của DA,DB
=>EM là đường trung bình của ΔDAB
=>EM//AB và \(EM=\dfrac{AB}{2}=4\)
Xét ΔDBC có
M,F lần lượt là trung điểm của DB,DC
=>MF là đường trung bình của ΔDBC
=>MF//BC và \(MF=\dfrac{BC}{2}=\dfrac{9}{2}=4,5\)
AD+DC=AC
=>2*ED+2*DF=AC
=>AC=2EF
=>\(EF=\dfrac{AC}{2}=4\)
Chu vi tam giác MEF là:
\(C_{MEF}=EF+EM+MF=4+4+4,5=12,5\)
b: \(\dfrac{AB+AD}{2}=\dfrac{AC+AD}{2}=\dfrac{AD+DC+AD}{2}\)
\(=\dfrac{2AD+2DF}{2}=AD+DF=AF\)