Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
=>AB=AC
mà AB=8
nên AC=8
Xét ΔDAB có
E,M lần lượt là trung điểm của DA,DB
=>EM là đường trung bình của ΔDAB
=>EM//AB và \(EM=\dfrac{AB}{2}=4\)
Xét ΔDBC có
M,F lần lượt là trung điểm của DB,DC
=>MF là đường trung bình của ΔDBC
=>MF//BC và \(MF=\dfrac{BC}{2}=\dfrac{9}{2}=4,5\)
AD+DC=AC
=>2*ED+2*DF=AC
=>AC=2EF
=>\(EF=\dfrac{AC}{2}=4\)
Chu vi tam giác MEF là:
\(C_{MEF}=EF+EM+MF=4+4+4,5=12,5\)
b: \(\dfrac{AB+AD}{2}=\dfrac{AC+AD}{2}=\dfrac{AD+DC+AD}{2}\)
\(=\dfrac{2AD+2DF}{2}=AD+DF=AF\)
a, Áp dụng định lí Pytago cho ∆ABC ta có:
AB2 + AC2 = BC2
=> AB2 + 82 = 102
=> AB2 = 100 - 64 = 36
=> AB = 6 cm
Vì AB = AD mà A nằm giữa B và D (cách vẽ) => BD = 2AB = 12cm
b, Xét ∆ABC và ∆ADC, ta có:
- AB = AD (gt)
- góc DAC = góc BAC = 90o
- CA là cạnh chung (gt)
=> ∆ABC = ∆ADC (c-g-c)
c, Xét ∆ECD và ∆EBF, ta có:
- góc FBE = góc DCE [so le trong]
- EB = EC (E là trung điểm BC)
- góc CED = góc BEF (đối đỉnh)
=> ∆ECD = ∆EBF (g-c-g)
=> DE = EF
d,
Vì ∆ECD = ∆EBF => CD = BF
Mà DB + BF > DF (bất đẳng thức tam giác)
\(\Rightarrow\frac{DB+BF}{2}>\frac{DF}{2}=DE\)
\(\Leftrightarrow\frac{DB+DC}{2}>DE\)
Bài 1:
a: Xét ΔABD có E,I lần lượt là trung điểm của BA,BD
=>EI là đường trung bình của ΔABD
=>EI//AD và EI=AD/2
EI//AD
D\(\in\)AC
Do đó: EI//AC
Xét ΔBDC có
I,M lần lượt là trung điểm của BD,BC
=>IM là đường trung bình của ΔBDC
=>IM//DC và IM=DC/2
IM//DC
D\(\in\)AC
Do đó: IM//AC
IM//AC
EI//AC
IM,EI có điểm chung là I
Do đó: E,I,M thẳng hàng
Xét ΔBEC có
M,K lần lượt là trung điểm của CB,CE
=>MK là đường trung bình của ΔBEC
=>MK//EB và MK=EB/2
MK//EB
E\(\in\)AB
Do đó: MK//AB
Xét ΔACE có
D,K lần lượt là trung điểm của CA,CE
=>DK là đường trung bình của ΔAEC
=>DK//AE và DK=AE/2
DK//AE
E\(\in\)AB
Do đó: DK//AB
DK//AB
MK//AB
DK,MK có điểm chung là K
Do đó: D,M,K thẳng hàng
b: MI=DC/2
EI=AD/2
mà AD=DC
nên MI=EI
=>I là trung điểm của ME
MK=BE/2
DK=AE/2
mà BE=AE
nên MK=DK
=>K là trung điểm của DM
Xét ΔMED có
I,K lần lượt là trung điểm của ME,MD
=>IK là đường trung bình
=>IK//ED và IK=ED/2
c: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{BC}{2}\)
\(IK=\dfrac{ED}{2}=\dfrac{BC}{2}:2=\dfrac{BC}{4}=\dfrac{4}{4}=\dfrac{4}{4}=1\left(cm\right)\)
a) Xét ΔAND và ΔCNB có
NA=NC(N là trung điểm của AC)
\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)
ND=NB(N là trung điểm của BD)
Do đó: ΔAND=ΔCNB(c-g-c)
b) Ta có: ΔAND=ΔCNB(cmt)
nên AD=BC(hai cạnh tương ứng)
Ta có: ΔAND=ΔCNB(cmt)
nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)
mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC và AB=EC
c: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔBCD cân tại C
d: Xét ΔOBC có
OM là đường cao
OM là đường trung tuyến
Do đó: ΔOBC cân tại O
Suy ra: OB=OC(1)
Xét ΔOBD có
OA là đường cao
OA là đường trung tuyến
Do đó: ΔOBD cân tại O
Suy ra: OB=OD(2)
Từ (1) và (2) suy ra OB=OC=OD
hay O cách đều ba đỉnh của ΔBDC
a) Xét tam giác AND và tam giác CNB ta có:
NB = ND (Vì N là trung điểm của BD)
góc AND = góc CNB (đối đỉnh)
NA = NC (Vì N là trung điểm của AC)
=> tam giác AND = tam giác CNB (c-g-c)
b) Vì tam giác AND = tam giác CNB
=> AD = BC (2 cạnh tương ứng)
=> góc DAN = góc BCN (2 góc tương ứng)
mà góc DAN và góc BCN là 2 góc so le trong
suy ra AD // BC
c) chưa nghĩ ra