\(\left(\sqrt{5}+\sqrt{2}\right)\)\(\left(\sqrt{74}22\sqrt{10}\right)\)=\(30\sqrt{5}\)- \(36\sqrt{2}\)
chứng minh ve61` trái bằng vế phải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{7-2\sqrt{10}}.\left(7+2\sqrt{10}\right)\left(74-22\sqrt{10}\right)}{\sqrt{125}-4\sqrt{50}+5\sqrt{20}+\sqrt{8}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}.\left(78-6\sqrt{10}\right)}{5\sqrt{5}-20\sqrt{2}+10\sqrt{5}+2\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(78-6\sqrt{10}\right)}{15\sqrt{5}-18\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(26-2\sqrt{10}\right)}{5\sqrt{5}-6\sqrt{2}}\)
\(=\frac{30\sqrt{5}-36\sqrt{2}}{5\sqrt{5}-6\sqrt{2}}=6\)
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`
`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`
`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`
`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`
`=2(\sqrt5-1)sqrt{6+2\sqrt5}`
`=2(\sqrt5-1)(\sqrt5+1)`
`=2(5-1)`
`=8`
`(4\sqrt2+\sqrt{30})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=\sqrt2(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{8-2\sqrt{15}}`
`=(4+\sqrt{15})(\sqrt5-\sqrt3)(\sqrt5-\sqrt3)`
`=(4+\sqrt{15})(8-2\sqrt{15})`
`=2(4+\sqrt{15})(4-\sqrt{15})`
`=2(16-15)`
`=2`
a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))
=2(\(\sqrt{5}+5-\sqrt{5}-1\))
=2.4=8=VP
=> đpcm
b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)
=\(2\sqrt{2}-2\)
=2\(\left(\sqrt{2}-1\right)\)
=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)
vậy VT=VP =>đpcm
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)
\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)
Biến đổi vế trái
\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)
\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)
\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)
Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh