K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\text{…}-\frac{1}{2^n}\)

\(A=1-\frac{1}{2^n}\)

Vậy A < 1 với n thuộc N*

21 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

18 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)

7 tháng 9 2017

v~ đề khó hiểu vậy sao làm

24 tháng 4 2016

M = 1/2.2 + 1/3.3 +.....+ 1/n.n

M < 1/1.2 + 1/2.3 +.....+ 1/(n-1).n

M < 1 - 1/2 + 1/2 - 1/3 +......+ 1/n-1 - 1/n

M < 1 - 1/n < 1

=> M < 1 (đpcm)

Ai k mk mk k lại cho,kết bạn luôn nhé!

số các số hạng là:

(2n-1-1):2+1=n(số)

tổng A là:

(2n-1+1)n:2=n.n=n2

=>đpcm

8 tháng 10 2015

Số số hạng là :

(2n + 1 - 1) : 2 + 1 = n + 1 (số hạng)

Do đó \(M=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2.\left(n+1\right).\left(n+1\right)}{2}=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

Vậy M là số chính phương

12 tháng 12 2016

Gọi ƯCLN(2n+5, n+2)=d

Ta có: 2n+5 chia hết cho d

           n+2 chia hết cho d suy ra 2.(n+2) chia hết cho d suy ra 2n+4 chia hết cho d.

 Suy ra 2n+5 - 2n+4 chia hết cho d

Suy ra 1 chia hết cho d. 

Suy ra d thuộc ước của 1 ={1}

 Vậy ƯCLN( 2n+5, n+2)=1.( đpcm)