Cho tam giác ABC có hai đường cao BD,CE cắt nhau tại H
CM: A,D,E,H cùng nằm trên đường tròn (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)
a, Gọi O là trung điểm của AH thì OE = OA = OH = OD
b, HS tự làm
Giải thích các bước giải:
a. Gọi OO là trung điểm AHAH
Xét tam giác AEHAEH vuông tại HH: OO là trung điểm AH⇒AO=OH=OEAH⇒AO=OH=OE
Chứng minh tương tự ⇒AO=OH=OD⇒AO=OH=OD
⇒OA=OH=OD=OE⇒OA=OH=OD=OE
Vậy A,D,H,E∈(O)A,D,H,E∈(O) với OO là trung điểm AHAH
b. Có: BD∪CE=H⇒HBD∪CE=H⇒H là trực tâm tam giác ABCABC
⇒AH⊥BC⇒AH⊥BC
Mà: CE⊥ABCE⊥AB
⇒ˆEAH=ˆECB(1)⇒EAH^=ECB^(1) (hai góc có cạnh tương ứng vuông góc)
Có: OA=OE⇒OA=OE⇒ tam giác AOEAOE cân tại OO
⇒ˆAEO=ˆEAO(2)⇒AEO^=EAO^(2)
Chứng minh tương tự ⇒⇒ tam giác EMCEMC cân tại MM
⇒ˆECM=ˆCEM(3)⇒ECM^=CEM^(3)
(1);(2);(3)⇒ˆAEO=ˆCEM(1);(2);(3)⇒AEO^=CEM^
Mà: ˆAEO+ˆOEC=ˆAEC=90∘AEO^+OEC^=AEC^=90∘
⇒ˆOEC+ˆCEM=ˆOEM=90∘⇒OEC^+CEM^=OEM^=90∘
⇒EM⇒EM là tiếp tuyển của (O)(O)
a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b) Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
^OEH=^OHE=^KHC; ^MEC=^MCE.
mà ^KHC+^MCE=90o.
Suy ra: ^OEH+^MEC=90o nên OE⊥EM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.
Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.
c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)
Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)
\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)
d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy)
Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)
Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)
\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)
Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)
Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)
Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\)
\(\Rightarrow\) OA đi qua trung điểm của PQ (4)
Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ
đề chưa có điểm O mà sao có tâm tròn tâm o
mình chịu thôi mới học ko biết gì hết