1 người đi xe máy từ A đến B cách 60km với vận tốc dự định trước sau khi đi được \(\frac{1}{3}\) quãng đường. Do thời tiết không thuận lợi nên trên quãng đường còn lại người đó đi vận tốc ít hơn so vận tốc dự định ban đầu 10 km/h. tính vận tốc dự định và người đó từ A đến B .Biết người đó đến muộn hơn dự định phút
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vận tốc dự định của xe là x (x>0)
vận tốc xe khi đi được \(\dfrac{1}{3}\)quãng đường là x+10
đổi 20'=\(\dfrac{1}{3}\)h -
theo bài ra ta có pt:\(\dfrac{40}{x}\)+\(\dfrac{20}{x+10}\)-\(\dfrac{60}{x}\)=\(\dfrac{1}{3}\)
=>\(x^2\) +10x=1200
=>\(x^2\)+10x -1200=0(a=1, b'=5, c= -1200)
ta có \(\Delta'\)=\(b^2\)-ac = \(5^2\)-(-1200) = 25 +1200 = 1225>0
=>\(\sqrt{1225}\)= 35
pt có 2 nghiệm phân biệt
x1 = \(\dfrac{-5+35}{1}\)= 30(TM)
x2=\(\dfrac{-5-35}{1}\)=-40(Ko TM)
vậy vận tốc ban đầu là 30km/h
thời gian đi là 2h20'
Vậy vận tốc dự định của người đó la 40 km/h.
Thời gian người đó đi từ A đến B là (giờ) = 1 giờ 50 phút
Gọi x (km/h) là vận tốc dự định của người đó (x>5)
Vận tốc người đó giảm vận tốc 5km/h là x−5 (km/h)
Thời gian dự đinh đi là: \(\dfrac{60}{x}\)(giờ)
Thời gian thực tế người đó đi nửa quãng đường đầu là: \(\dfrac{30}{x}\)(giờ)
Thời gian thức tế người đó đi nửa quãng đường còn lại là: \(\dfrac{30}{x-5}\)(giờ)
Theo đề ra ta có thời gian thực tế chậm hơn thời gian dự định là 1 giờ nên ta có:
\(\dfrac{60}{x}\)=\(\dfrac{30}{x}\)+ \(\dfrac{30}{x-5}\) - 1
⇒ 60(x-5) = 30(x-5) + 30x - x(x-5)
⇔ 60x - 300 = 30x - 150 + 30x - x2+5x
⇔ x2 - 5x - 150 = 0
⇔ \(\left[{}\begin{matrix}x=15\left(tm\right)\\x=-10\left(loại\right)\end{matrix}\right.\)
Vậy.....
Gọi vận tốc dự định là x
Vận tốc đi trên S còn lại là : x+10 Dk :x>0
Vì người đó đến B sớm hơn dự định 24phut (=0,4h) nên ta có pt :
40/x +80/x+10 +0,4 = 120/x
0,4 = 80/x - 80/x+10
0,4=800/x(x+10)
x2+10x=2000
x2+10x-2000=0
(x-40)(x+50)=0
Vi x>0 => x+50>0
=> x-40 =0
x=40(km/h)
Gọi vận tốc dực định là x (km/giờ)
Thời gian định đi là: 120/x (giờ)
Thời gian đi 1/3 quãng đường đầu là: 40/x (giờ)
Vận tốc quãng đường còn lại là: x + 10 (km/giờ)
Thời gian còn lại là: 80/x + 10 (giờ)
Theo đề bài, ta có:
\(\frac{40}{x}+\frac{80}{x+10}-\frac{120}{x}=-\frac{24}{60}\)
\(\Leftrightarrow\orbr{\begin{cases}x=40\\x=-50\end{cases}}\)
Vận tốc dự định của người đó là 40 (km/giờ)
Thời gian lăn bánh là:
\(\frac{40}{40}+\frac{80}{50}=2,6\)(giờ)
Gọi vận tốc dự định là x
Thời gian dự định là 30/x
Thời gian thực tế là \(\dfrac{15}{x-6}+\dfrac{15}{x+10}\)
Theo đề, ta có: \(\dfrac{30}{x}=\dfrac{15}{x-6}+\dfrac{15}{x+10}\)
=>\(\dfrac{1}{x-6}+\dfrac{1}{x+10}=\dfrac{2}{x}\)
=>\(\dfrac{x+10+x-6}{\left(x-6\right)\left(x+10\right)}=\dfrac{2}{x}\)
=>2(x^2+4x-60)=x(2x+4)
=>2x^2+8x-120=2x^2+4x
=>4x=120
=>x=30