Tìm số nguyên n biết: 2n+9 ⋮ n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2n + 9) ⋮ (n + 3) đk n ≠ -3
2n + 6 + 3 ⋮ n + 3
2.(n + 3) + 3 ⋮ n + 3
3 ⋮ n + 3
n + 3 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n + 3 | -3 | -1 | 1 | 3 |
n | -6 | -4 | -2 | 0 |
Theo bảng trên ta có
n \(\in\) { -6; - 4; -2; 0}
2n + 9 = 2n + 6 + 3 = 2(n + 3) + 3
Để (2n + 9) ⋮ (n + 3) thì 3 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ n ∈ {-6; -4; -2; 0}
Ta có:
2n + 9 = 2n + 6 + 3
= 2(n + 3) + 3
Để (2n + 9) ⋮ (n + 3) thì 3 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ n ∈ {-6; -4; -2; 0}
(2n+9) ⋮ (n+3)
Ta có
2n + 9
= 2(n+3)3
Vì 2(n+3)3 ⋮ (n+3)
Suy ra n+3 \(\in\) Ư(3) = {-3,-1,1,3}
n+3 | -3 | -1 | 1 | 3 |
n | -6 | -4 | -2 | 0 |
Vậy n \(\in\) {0;3}
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
Cho phân số dạng 2n-3/2n+1
- Tìm n biết giá trị phân số đó = 3/4
- Tìm số nguyên n để phân số đó là nguyên
a,n=3
b,Goi ps can tim la A
de A co gia tri nguye <=>2n-3 chia het cho 2n+1
=>2n-3-(2n+1) chia het cho 2n+1
=>2 chia het cho 2n+1
=>2n +1 thuoc uoc cua 2={+-1,+-2}
Ta co bang gia tri
2n+1 1 -1 2 -2
n 0 -1 k co k co
( 2n - 3) \(⋮\) (n + 1)
đkxđ n \(\ne\) - 1
2n - 3 \(⋮\) n + 1
2n + 2 - 5 ⋮ n + 1
2.(n + 1) - 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
\(2n+9⋮n+3\)
=>\(2n+6+3⋮n+3\)
=>\(3⋮n+3\)
=>\(n+3\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-2;-4;0;-6\right\}\)