K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

co a+b+c=0 =>b+c=-a

suy ra (b+c)2=(-a)2  hay b2+2bc+c2 =a2

hay b2+c2-a2 =-2bc

Suy ra (b2 + c2 - a)2 =( -2bc)2

<=> b+c4 +a+2b2c2 -2a2b2 -2a2c2 = 4b2c2

<=> a4+b4+c4 =2a2b2+2b2c2+2c2a2

<=> 2(a4+b4+c4) = a4+b4+c4+2a2b2+2b2c2+2c2a2

<=> a2+b2+c2 =2(a4+b4+c4) (dpcm)

Giá trị này trong nào chả bằng 0

Từ đề bài ta có :

\(a+b+c=0< =>\left(a+b+c\right)^2=0< =>a^2+b^2+c^2+2ab+2ac+2bc=0\)

Mà \(a^2+b^2+c^2=1\)  < = > 1 + 2 ( ab + ac + bc ) = 0

< = > 2 ( ab + ac + bc ) = -1 

< = > ab + ac + bc = -1/2

\(< =>\left(ab+ac+bc\right)^2=\left(-\dfrac{1}{2}\right)^2< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=\dfrac{1}{4}\)

Lại có từ \(a^2+b^2+c^2=1\)

\(< =>\left(a^2+b^2+c^2\right)^2=1< =>a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]=1\)

\(< =>a^4+b^4+c^4+2.\dfrac{1}{4}=1< =>a^4+b^4+c^4+\dfrac{1}{2}=1< =>a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\left(đpcm\right)\)

13 tháng 8 2017

a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) (1)

CẦn chứng minh:

2(a^4 + b^4 + c^4) = (a² + b² + c²)²

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)

<=> 8.(ab²c + bc²a + a²bc) = 0

<=> 8abc.(a + b + c) = 0

<=> 0 = 0 (đúng), Vì a + b + c = 0

=> Đpcm

13 tháng 8 2017

a + b + c = 0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\left(1\right)\)

Cần phải chứng minh

2.(a4 + b4 + c4)=(a2+b2+c2)

\(\Leftrightarrow\) 2.(a4 - b4+c4)=a4+b4+c4+2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\)a4 +b4+c4=2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\) (a2 + b2 +c2 ) = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) [ -2.(ab+bc+ca)2 ] = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) 4(a2b2+b2c2 +c2a2)+8.(ab2c +bc2a+a2bc)=4.(a2b+b2c2+c2+a2

\(\Leftrightarrow\) 8(ab2c+bc2a+a2bc)=0

\(\Leftrightarrow\)8abc.(a+b+c)=0

\(\Leftrightarrow\) 0 =0 (đúng ) Vì a +b +c =0

=> ĐPCM

27 tháng 7 2023

Ta có :

\(\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

\(\Rightarrow dpcm\)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

11 tháng 7 2018

Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2=4\left[a^2b^2+b^2c^2+2abc\left(a+b+c+\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2\) (a + b + c = 0)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (1)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\) (2)

Từ (1) và (2) \(\Rightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+a^4+b^4+c^4=2\left(a^4+b^4+c^4\right)\)

=> đpcm

23 tháng 2 2017

bn c/m điều ngược lại 

Vd: cho 0=<a,b,c=<4/3 và a+b+c=2. CMR a^2+b2+c^2=2