Chứng minh rằng: 32 + 33+ 34 +……+ 3101 chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 32 + 33 + 34 + ... + 3101 ( có 100 số; 100 chia hết cho 4)
A = ( 32 + 33 + 34 + 35) + ( 36 + 37 + 38 + 39) + ... + (398 + 399 + 3100 + 3101)
A = 3 . ( 3 + 32 + 33 + 34) + 35 . ( 3 + 32 + 33 + 34) + ... + 397 . ( 3 + 32 + 33 + 34)
A = 3 . 120 + 35 . 120 + ... + 397 . 120
A = 120 . ( 3 + 35 + ... + 397) chia hết cho 120
Chứng minh 32 + 33 + 34 + ... + 3101 chia hết cho 120
ta co : S = 3 2 + 3 3 + 3 4 +..... 3 101
S = [ 3 +3 2 + 3 3 + 3 4 ] + 3 5 [ 3 + 3 2+ 3 3 + 3 4] +..... + 3 97 [ 3 + 3 2 + 3 3 + 3 4]
S = [ 3 + 3 5 +..... + 3 4 ] + [ 3 + 3 2 + 3 3 +3 4] = M + 120 = S chia het cho 120
1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.
Ta có:
A=3^2+3^3+3^4+...+3^101
= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)
= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)
= 120.(3+3^5+...+3^97) chia hết cho 120
(đ.p.c.m)
:) câu 2 em chịu
Ta có: S=32+33+34+...+3101
S=3(3+32+33+34)+35(3+32+33+34)+...+397(3+32+33+34)
S=(3+35+...+39)+(3+32+33+34)= M+120 => Schia hết cho 120
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
Đặt A = 32 + 33 + 34 + .....+ 3101 ( có 100 số ; có 100 chia hết cho 4 )
A = ( 32 + 33 + 34 + 35 ) + ( 36 + 37 + 38 + 39 ) + ....+ ( 398 + 399 + 3100 + 3101 )
A = 3 . ( 3 + 32 + 33 + 34 ) + 35. ( 3 + 32 + 33 + 34 ) + ..... + 397. ( 3 + 32 + 33 + 34 )
A = 3 . 120 + 35. 120 + .... + 397. 120
A = 120 . ( 3 + 35 + ... + 397 ) chia hết cho 120
\(\Rightarrow\) 32 + 33+ 34 +……+ 3101 chia hết cho 120
tự tím nha