K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(\left(m+1\right)^2\ge4m\)

\(\Leftrightarrow m^2+2m+1\ge4m\)

\(\Leftrightarrow m^2-2m+1\ge0\Leftrightarrow\left(m-1\right)^2\ge0\)

\(m^2+n^2+2\ge2\left(m+n\right)\)

\(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)

5 tháng 8 2017

làm câu đầu trước nha :

<=> m2+2m+1>=4m

<=>m2-2m+1>=0

<=>(m-1)2>=0 ( điều phải chứng minh

26 tháng 5 2016

Ta có:

m2-2m+1+n2-2n+1

=(m-1)2+(n-1)2>0

Đpcm

26 tháng 5 2016

Dễ thui Ta có: 2 = 2 mà đây là tổng

=> đẳng thức trên lớn hơn 2

Bừa hìhif

3 tháng 3 2017

Đáp án: D

Các bước giải bài toán trên đều đúng.

20 tháng 9 2017

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD.

Xét ΔABC có BO là trung tuyến

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Mà O là trung điểm của BD nên BD = 2. BO ⇒ BD2 = 4. BO2

⇒ BD2 = 2.(AB2 + BC2) – AC2

⇒ BD2 + AC2 = 2.(AB2 + BC2)

⇒ m2 + n2 = 2.(a2 + b2) (ĐPCM).

31 tháng 10 2018

Ta có: m - 1 2   ≥  0;  n - 1 2   ≥  0

 

       ⇒  m - 1 2  +  n - 1 2   ≥  0

 

       ⇔  m 2  – 2m + 1 + n 2  – 2n + 1  ≥  0

 

       ⇔  m 2  +  n 2  + 2  ≥  2(m + n)

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

18 tháng 2 2019

31 tháng 1 2021

n 2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n 2+n+1 không chia hết cho 2 và 5

31 tháng 1 2021

a) n2+n+1=n(n+1)+1

Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2

n2+n+1=n(n+1)+1

Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5

30 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)