K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(\left(m+1\right)^2\ge4m\)

\(\Leftrightarrow m^2+2m+1\ge4m\)

\(\Leftrightarrow m^2-2m+1\ge0\Leftrightarrow\left(m-1\right)^2\ge0\)

\(m^2+n^2+2\ge2\left(m+n\right)\)

\(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)

5 tháng 8 2017

làm câu đầu trước nha :

<=> m2+2m+1>=4m

<=>m2-2m+1>=0

<=>(m-1)2>=0 ( điều phải chứng minh

18 tháng 3 2017

\(A=mn\left(m^2-n^2\right)\) (1)

\(A=mn\left(n-m\right)\left(n+m\right)\)(1)

1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}

2.-Với A dạng (2)

2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2

2.1- nếu n và m lẻ thì (n+m) chia hết cho 2

Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm

19 tháng 3 2017

mơn ạ yeu

19 tháng 11 2016

Ta có

\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)

Tương tự ta có 

\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)

\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)

\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)

\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)

\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)

\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)

19 tháng 11 2016

\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)

Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)

\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)

1 tháng 3 2020

a ) Ta co \(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)

\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)

Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\)

Hay \(CD\perp DE\)

\(\Rightarrow DE\)// \(AB\) nên tứ giác ABED là hình thang cân

\(\Rightarrow AD=BE\)

Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\) không dổi

b ) Vì IB = IC = IM nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)

Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\) Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\) ( không dổi vì OM cố định ) Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi Chúc bạn học tốt !!
1 tháng 3 2020

A C I B M J O D E

NV
7 tháng 10 2019

Gọi điểm cố định là \(\left(x_0;y_0\right)\)

\(y_0=\left(m+2\right)x_0+m-1\)

\(\Leftrightarrow\left(x_0+1\right)m+2x_0-y_0-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-3\end{matrix}\right.\)

Vậy đường thẳng luôn đi qua điểm cố định \(\left(-1;-3\right)\)

22 tháng 4 2017

Phương trình: \(x^2-2\left(m-1\right)x+m-4=0\left(1\right)\)

a/ Xét phương trình (1) có \(\Delta=4\left(m-1\right)^2-4\left(m-4\right)\)

= \(4m^2-8m+4-4m+16\)

= \(4m^2-12m+20\)

= \(\left(2m-3\right)^2+11\)

Ta luôn có: \(\left(2m-3\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m-3\right)^2+11>0\) với mọi m

\(\Leftrightarrow\Delta>0\) với mọi m

Vậy phương trình (1) có 2 nghiệm phân biệt với mọi giá trị của m

b/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-4\end{matrix}\right.\)

Theo đề bài ta có:

\(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)

= \(x_1-x_1x_2+x_2-x_1x_2\)

=\(\left(x_1+x_2\right)-2x_1x_2\)

= \(2\left(m-1\right)-2\left(m-4\right)\)

= 2m-2-2m+8

= 6

Vậy biểu thức \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\) không phụ thuộc vào m