Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
m^2+n^2=\(m\cdot m+n\cdot n\)
=\(2m+2n\)
=2(m+n)
vậy m^2+n^2=2(m+n)
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
a. Ta có:
\(\left(m+1\right)^2\)\(=m^2+2m+1\)
\(\left(m+1\right)^2\ge4m\Leftrightarrow m^2+2m+1\ge4m\)
\(\Leftrightarrow m^2+2m+1-4m\ge0\)
\(\Leftrightarrow m^2-2m+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2\ge0\) (đúng \(\forall\) m)
Vậy \(\left(m+1\right)^2\ge4m\)
b. \(m^2+n^2+2\ge2\left(m+n\right)\)
\(\Leftrightarrow m^2+1+n^2+1\ge2m+2n\)
Ta có:
\(\left(m^2+1\right)^2\ge4m^2\) \(\Rightarrow m^2+1\ge2m\)
\(\left(n^2+1\right)^2\ge4n^2\Rightarrow n^2+1\ge2n\)
a ) \(\left(m+1\right)^2\ge4m\)
\(\Leftrightarrow m^2+2m+1\ge4m\)
\(\Leftrightarrow\left(m^2+2m+1\right)-4m\ge0\)
\(\Leftrightarrow m^2-2m+1\ge0\)
\(\Rightarrow\left(m-1\right)^2\ge0\) (luôn đúng) (ĐPCM)
b ) \(m^2+n^2+2\ge2\left(m+n\right)\)
\(\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)
\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(luôn đúng) |(ĐPCM)
Ta có: m - 1 2 ≥ 0; n - 1 2 ≥ 0
⇒ m - 1 2 + n - 1 2 ≥ 0
⇔ m 2 – 2m + 1 + n 2 – 2n + 1 ≥ 0
⇔ m 2 + n 2 + 2 ≥ 2(m + n)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
a) (m+1)^2>=4m
<=>(m+1)*(m+1)>=4m
=>m2+m+m2+m>=4m
=>2m2+2m>=4m
=>2(m2+m)>=4m
xét m=0=>2(02+0)=4*0
=>2(m2+m)=4m (1)
xét m\(\ne\)0 vì m2+m=4m với mọi m
=>2(m2+m)>4m (2)
từ (1) và (2)=>(m+1)^2>=4m