A=1+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
Lời giải:
$A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{500}}$
$5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{499}}$
$\Rightarrow 5A-A=1-\frac{1}{5^{500}}< 1$
Hay $4A< 1$
$\Rightarrow A< \frac{1}{4}$ (đpcm)
\(A=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
...
\(4A=5^{64}-1\)
\(\Rightarrow A=\frac{5^{64}-1}{4}>B=\frac{5^{64}-1}{5}\)
a) Calculate:1 + 3 + 5 + ...... + 57 = .....
b) Calculate:3 - 1 + 5 - 3 + 7 - 5 + ... + 99 - 97 =....
Mình chỉ biết làm phần a thôi à :
a , Dãy trên có số số hạng là :
( 57 - 1 ) : 2 + 1 = 29 ( số hạng )
Vậy tổng của tất cả các số lẻ từ 1 đến 57 là :
( 57 + 1 ) x 29 : 2 = 841
Đáp số : 841
ĐÚNG 100% LUÔN NHA , TK MÌNH NHÉ !!
A = \(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) + \(\dfrac{1}{1+3+5+7}\) + ... + \(\dfrac{1}{1+3+5+7+...+2021}\)
\(\Leftrightarrow\) A = \(\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}\) + \(\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}\) + \(\dfrac{1}{\dfrac{\left(1+7\right).4}{2}}\) + ... + \(\dfrac{1}{\dfrac{\left(1+2021\right).1011}{2}}\)
= \(\dfrac{2}{2.4}\) + \(\dfrac{2}{3.6}\) + \(\dfrac{2}{4.8}\) + ... + \(\dfrac{2}{1011.2021}\)
= \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + ... + \(\dfrac{1}{2021.2021}\)
A < \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{2020.2021}\) )
< \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2020}\) - \(\dfrac{1}{2021}\) )
< \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2}\) - \(\dfrac{1}{2021}\) ) < \(\dfrac{1}{4}\) + \(\dfrac{1}{2}\) = \(\dfrac{3}{4}\)
Kiểu như vậy hả ?
Ta có:
Tập hợp A:
\(A=\left\{1;2;3;5;8\right\}\)
Tập hợp B:
\(B=\left\{-1;0;1;5;9\right\}\)
Mà: \(A\cup B\)
\(\Rightarrow A\cup B=\left\{-1;0;1;2;3;5;8;9\right\}\)
⇒ Chọn B
TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013
CÓ 4A=5A-A
=>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)
=>4A= 1- 1/5^2014
=>A= (1-1/5^2014)/4 ;CÓ 1-1/5^2014 <1
=>A<1/4
A: 1+5 = 6
1+5=6