Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)
\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)
\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)
\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)
=> 5A = 1 + 1/5 +...+1/5^2013
=>4A= 1- 1/5^2014
=> 4A< 1 => A < 1/4
A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\)
5A=\(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+...+\dfrac{5}{5^{2014}}\)
5A=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\)
5A-A=\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\right)\)4A=\(1-\dfrac{1}{5^{2014}}\)
4A=\(\dfrac{5^{2014}-1}{5^{2014}}\)
A=\(\dfrac{5^{2014}-1}{5^{2014}}:4\)
A=\(\dfrac{5^{2014}-1}{5^{2014}}.\dfrac{1}{4}\)
\(\Rightarrow\)A<\(\dfrac{1}{4}\)
Ta có:
A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\)
\(\Rightarrow\) 5A = 5\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\)
\(\Rightarrow\) 5A = \(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+....+\dfrac{5}{5^{2014}}\)
\(\Rightarrow\) 5A = \(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\)
\(\Rightarrow\)\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\right)\)-\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\) = 5A - A
\(\Rightarrow\)4A= 1 - \(\dfrac{1}{5^{2014}}\)
\(\Rightarrow\) A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4
Vậy A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2014^3}< B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2013.2014.2015}\)
Mà \(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2013.2014.2015}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)
\(=\frac{1}{2}-\frac{1}{2014.2015}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013
CÓ 4A=5A-A
=>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)
=>4A= 1- 1/5^2014
=>A= (1-1/5^2014)/4 ;CÓ 1-1/5^2014 <1
=>A<1/4
\(\text{Giải}\)
\(\text{5A=1+1/5+1/5^2+......+1/5^2013}\)
\(\Rightarrow5A-A=4A=1-\frac{1}{5^{2014}}< 1\Rightarrow A< \frac{1}{4}\left(\text{đpcm}\right)\)