B = 1 + 5 + 5² + .... + 5²⁰
Tìm x để 4B + 1 = 5^x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
Bài 4:
a) \(\dfrac{x}{2}=\dfrac{2}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=2\)
Vậy: \(x=2\)
b) \(-\dfrac{1}{5}=\dfrac{2}{x}\)
\(\Rightarrow x=\dfrac{-5.2}{1}=-10\)
Vậy: \(x=-10\)
c) \(\dfrac{x}{5}=\dfrac{5}{x}\)
\(\Rightarrow x^2=25\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{5;-5\right\}\)
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
`a, 1/2 +x=3/4`
`=> x= 3/4 -1/2`
`=> x= 3/4-2/4`
`=>x= 1/4`
`b, 5/2 -x=1/3`
`=> x= 5/2 -1/3`
`=> x= 15/6 - 2/6`
`=>x= 13/6`
`c, 2 . (1/3 +x)=1/5`
`=> 1/3 +x=1/5:2`
`=> 1/3 +x= 1/10`
`=>x= 1/10-1/3`
`=>x= 3/30 - 10/30`
`=>x=-7/30`
`d, 2/3 - (1/2 -x)=1/5`
`=> 1/2-x= 2/3 -1/5`
`=>1/2-x= 10/15 - 3/15`
`=>1/2-x=7/15`
`=>x= 1/2-7/15`
`=>x=1/30`
`1/2 + x = 3/4`
`=> x = 3/4 - 1/2`
`=> x = 1/4`
`5/2 - x = 1/3`
`=> x = 5/2 - 1/3`
`=> x = 13/6`
`2.(1/3 + x) = 1/5`
`=>1/3 + x = 1/10 `
`=> x = 1/10 - 1/3`
`=> x = -7/30`
`2/3 - (1/2 -x)= 1/5`
`=> 1/2 - x = 7/15`
`=> x = 1/2 - 7/15`
`=> x = 1/30`
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a) |x+1|+|x+5|=4
\(\Rightarrow x+1+x+5=\pm4\)
\(x+1+x+5=4\)
\(\Rightarrow x^2+1+5=4\)
\(x^2+6=4\)
\(x^2=4-6\)
\(\Rightarrow x^2=-2\)
\(x+1+x+5=-4\)
\(x^2+6=-4\)
\(x^2=-8\)
B=1+5+5^2+....+5^20
5B=5+5^2+5^3+...+5^21
5B-B=(5+5^2+5^3+...+5^21)-(1+5+5^2+...+5^20)
4B=5^21-1
=>4B+1=5^21
Vì 4B+1=5^x
=>5^x=5^21
=>x=21
Vậy.....
tick cho mình nhé