Tìm x, biết :
2x-1 + 2x = 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x2 + 1)(x-3)=0
\(\Rightarrow\orbr{\begin{cases}2x^2+1=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x^2=-1\Rightarrow x^2=-\frac{1}{2}\left(vl\right)\\x=3\end{cases}}\)
Vậy x=3
48-(15-x)5=48
(15-x)5=48-48
(15-x)5=0
=> 15-x =0
x =15-0
x =15
Vậy x=15
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right).2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{2}-\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)
\(\Rightarrow2x=24\)
\(\Rightarrow x=12\)
=>(2x-1)^2=24^2
=>2x-1=24 hoặc 2x-1=-24
=>x=-23/2 hoặc x=25/2
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
a) \(2^x=8.64=2^3.2^6=2^9\Rightarrow x=9\)
b) \(3.2^x=48\Rightarrow2^x=16=2^4\Rightarrow x=4\)
Ta có : \(\frac{1+2x}{36}=\frac{1+4x}{48}=\frac{1+6x}{6y}\Rightarrow\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{1+2x}{36}=\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}=\frac{2+4x-1-4x}{72-48}=\frac{1}{24}\)
=> \(\frac{1+4x}{48}=\frac{1}{24}\Rightarrow\frac{1+4x}{48}=\frac{2}{48}\Rightarrow1+4x=2\Rightarrow x=0,25\)
\(\frac{1+2x}{36}=\frac{1+4x}{48}=\frac{1+6x}{6x}\Rightarrow\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{1+2x}{36}=\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}=\frac{2+4x-1-4x}{72-48}=\frac{1}{24}\)
\(\Rightarrow\frac{1+4x}{48}=\frac{1}{24}\Rightarrow\frac{1+4x}{48}=\frac{2}{48}\Rightarrow1+4x=2\Rightarrow x=0,25\)
Ta có : 2x - 2y = 48
=> x > y => x = y + n với n ∈ N*
=> 2x - 2y = 2y + n - 2y = 48
=> 2y . 2n - 2y = 48
=> 2y . (2n - 1) = 48
=> 2y ; 2n - 1 ∈ Ư(48) ∈ {1;2;3;4;6;8;12;16;24;48}
Mà 2n - 1 luôn lẻ với mọi n ∈ N*
=> 2n - 1 = 3
=> 2y . 3 = 48
=> 2y = 16 = 24
=> y = 4
=> 2x - 24 = 48
=> 2x = 48 + 16 = 64 = 26
=> x = 6
Vậy x = 6 ; y = 4
\(2^{x-1}+2^x=48\)
\(\Rightarrow2^x\cdot\dfrac{1}{2}+2^x=48\)
\(\Rightarrow2^x\left(\dfrac{1}{2}+1\right)=48\)
\(\Rightarrow2^x\cdot\dfrac{3}{2}=48\)
\(\Rightarrow2^x=32\)
\(\Rightarrow x=5\)
Vậy x = 5
#gboy2mai