Tính:
1^3+2^3+3^3+...+10^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200
a)
`1/3+3/4+2/3+1/4`
`=1/3+2/3+3/4+1/4`
`=1+1`
`=2`
b)
`3/4+3/5+2/8+4/10`
`=3/4+2/8+3/5+4/10`
`=6/8+2/8+6/10+4/10`
`=1+1`
`=2`
c)
`1/10+2/10+3/10+4/10+5/10+6/10+7/10+8/10+9/10`
`=1/10+9/10+2/10+8/10+3/10+7/10+6/10+4/10+5/10`
`=1+1+1+1+5/10`
`=4+5/10`
`=40/10+5/10`
`=45/10=9/2`
a: =1/3+2/3+3/4+1/4
=1+1
=2
b: =3/4+1/4+3/5+2/5
=1+1
=2
c: =(1+2+3+4+5+6+7+8+9)/10
=45/10
=9/2
`#3107.101107`
1.
`a,`
\(A=1+3+3^2+3^3+...+3^{2012}\)
`3A = 3 + 3^2 + 3^3 + ... + 3^2013`
`3A - A = (3 + 3^2 + 3^3 + ... + 3^2013) - (1 + 3 + 3^2 + 3^3 + ... + 3^2012)`
`2A = 3 + 3^2 + 3^3 + ... + 3^2013 - 1 - 3 - 3^2 - 3^3 - ... - 3^2012`
`2A = 3^2013 - 1`
`=> A = (3^2013 - 1)/2`
Vậy, `A = (3^2013 - 1)/2`
`b,`
\(B=1+10+10^2+10^3+...+10^{2023}\)
`10B = 10 + 10^2 + 10^3 + ... + 10^2024`
`10 B - B = (10 + 10^2 + 10^3 + ... + 10^2024) - (1 - 10 + 10^2 + 10^3 + ... + 10^2023)`
`9B = 10 + 10^2 + 10^3 + ... + 10^2024 - 1 - 10^2 - 10^3 - ... - 10^2023`
`9B = 10^2024 - 1`
`=> B = (10^2024 - 1)/9`
Vậy, `B = (10^2024 - 1)/9.`
`a)A=1+3+3^2+3^3+...+3^2012`
`=>3A=3+3^2+3^3+...+3^2013`
`=>3A-A=2A=3^2013-1`
`=>A=(3^2013-1)/2`
`b)B=1+10+10^2+...+10^2024`
`=>10B=10+10^2+10^3+....+10^2025`
`=>10B-B=9B=10^2025-10`
`=>B=(10^2025-10)/9`
Bài 7:
Số phần kẹo Hùng đã cho Hà và Hồng là:
\(\dfrac{2}{7}+\dfrac{1}{7}=\dfrac{3}{7}\left(phần\right)\)
Hùng còn lại số phần của gói kẹo là:
\(\dfrac{6}{7}-\dfrac{3}{7}=\dfrac{3}{7}\left(phần\right)\)
1:
2 3/4
5 6/5
3 3/9
7 6/8
2:
1/3 + 2/3 + (3/4 + 1/4) = 2
=2
= 4 5/10
\(2\dfrac{1}{3}.3=\dfrac{7}{3}.3=7.\\ \left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}=\dfrac{2}{5}-\dfrac{3}{4}-\dfrac{2}{5}=-\dfrac{3}{4}.\\ \dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}.\\ =\dfrac{-10}{11}\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right).\\ =\dfrac{-10}{11}.\left(1-1\right)=0.\)
1) 2\(\dfrac{1}{3}\).3=\(\dfrac{7}{3}\).3=7.
2) (2/5 -3/4) -2/5 = 2/5 -3/4 -2/5 = -3/4.
3) \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}=\dfrac{1}{11}\left(-\dfrac{40}{7}-\dfrac{30}{7}+21\right)=\dfrac{1}{11}.\left(-10+21\right)=1\).
\(a,3456731-19994=3436737\)
\(b,3\times31\times16+2\times24\times42+4\times27\times12\)
\(=\left(3\times16\right)\times31+\left(2\times24\right)\times42+\left(4\times12\right)\times27\)
\(=48\times31+48\times42+48\times27\)
\(=48\times\left(31+42+27\right)\)
\(=48\times100\)
\(=4800\)
\(c,\left(3^{10}+3^{12}\right):3^{10}\)
\(=3^{10}:3^{10}+3^{12}:3^{10}\)
\(=1+3^2\)
\(=1+9\)
\(=10\)
\(d,\left(2^{13}-3.2^{10}\right):2^{10}+\left(5^{10}-5^9\right):5^9\)
\(=2^{13}:2^{10}-3.2^{10}:2^{10}+5^{10}:5^9-5^9:5^9\)
\(=2^3-3+5-1\)
\(=8-3+5-1\)
\(=9\)
Ko biết
Ta chứng minh đẳng thức
\(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)
+ Với n=3
\(1^3+2^3++3^3=36\)
\(\left(1+2+3\right)^2=6^2=36\)
=> Đẳng thức đúng
+ Giả sử n=k đẳng thức trên cũng đúng
\(\Rightarrow1^3+2^3+3^3+...+k^3=\left(1+2+3+...+k\right)^2\)
+ Ta cần c/m với n=k+1 thì
\(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left[1+2+3+...+k+\left(k+1\right)\right]^2\)(2)
\(VT=1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3=\)
\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\)
\(=\dfrac{\left(k+1\right)^2\left[k^2+4k+4\right]}{4}=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
\(VP=\left[1+2+3+...+k+\left(k+1\right)\right]^2=\)
\(=\left\{\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]}{2}\right\}^2=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
Như vậy (2) có VT=VP => (2) đúng
Theo nguyên lý phương pháp quy nạp => (1) đúng
\(\Rightarrow1^3+2^3+3^3+...+10^3=\left(1+2+3+...+10\right)^2=\)
\(=\left[\dfrac{10\left(10+1\right)}{2}\right]^2=3025\)