cho \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)
tính \(M=a^2+\sqrt{a^4+a+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(a^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{32}\)
\(=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{16}\)
\(\Rightarrow\sqrt{8}a^2=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}\)
Ta lại co:
\(8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)
\(\Leftrightarrow2\sqrt{2}a^2=1-a\)
\(\Leftrightarrow8a^4=a^2-2a+1\)
Từ đề bài co:
\(\sqrt{8}M=\sqrt{8}a^2+\sqrt{8a^4+8a+8}\)
\(=\sqrt{8}a^2+\sqrt{a^2-2a+1+8a+8}\)
\(=\sqrt{8}a^2+a+3\)
\(=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}+\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}+3\)
\(=4\)
\(\Rightarrow M=\sqrt{2}\)
Ta có : \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\Leftrightarrow8a=4\sqrt{\sqrt{2}+\frac{1}{8}}-\sqrt{2}\Leftrightarrow8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(8a+\sqrt{2}\right)^2=16\left(\sqrt{2}+\frac{1}{8}\right)\) \(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)
\(\Leftrightarrow4a^2+\sqrt{2}a=\sqrt{2}\Leftrightarrow4a^2=\sqrt{2}-\sqrt{2}a\)
Đặt \(Y=\sqrt{a^4+a+1}-a^2\) \(\Rightarrow XY=a+1\Leftrightarrow X.\left(-Y\right)=-\left(a+1\right)\) (1)
\(X+\left(-Y\right)=2a^2=\frac{\sqrt{2}-\sqrt{2}a}{2}=\frac{1-a}{\sqrt{2}}\) (2)
Từ (1) và (2) suy ra X và Y là hai nghiệm của phương trình \(t^2+\frac{1-a}{\sqrt{2}}.t-\left(a+1\right)=0\)
Giải phương trình trên được \(t_1=-\sqrt{2}\) ; \(t_2=-\frac{x+1}{\sqrt{2}}\)
Suy ra : \(X=\sqrt{2}\) (vì X > 0)
a)\(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{1936}+\sqrt{1935}}=\)
\(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)\(+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right)\left(\sqrt{4}+\sqrt{3}\right)}+...\)\(+\frac{\sqrt{1936}-\sqrt{1935}}{\left(\sqrt{1936}-\sqrt{1935}\right)\left(\sqrt{1936}+\sqrt{1935}\right)}\)= \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{1936}-\sqrt{1935}\)= \(-1-\sqrt{1935}\)
b)đề hơi sai bạn ạ mẫu thức số một bằng 0 còn đâu sửa lại đề đi nhé sau đó trục căn thức tương tự như mk làm nha
cảm ơn bạn nha mik ghi dề sai đề đúng là như thế này nè\(\frac{1}{\sqrt{1}-\sqrt{2}}\) bạn giải giúp mik lun đi mik cảm ơn b nhìu lắm