K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

trời bộ bài giề này ko bít làm

12 tháng 6 2017

Xem lại đề bài nhé b

13 tháng 9 2018

Ta co:

\(a^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{32}\)

\(=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{16}\)

\(\Rightarrow\sqrt{8}a^2=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}\)

Ta lại co:

\(8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)

\(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)

\(\Leftrightarrow2\sqrt{2}a^2=1-a\)

\(\Leftrightarrow8a^4=a^2-2a+1\)

Từ đề bài co:

\(\sqrt{8}M=\sqrt{8}a^2+\sqrt{8a^4+8a+8}\)

\(=\sqrt{8}a^2+\sqrt{a^2-2a+1+8a+8}\)

\(=\sqrt{8}a^2+a+3\)

\(=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}+\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}+3\)

\(=4\)

\(\Rightarrow M=\sqrt{2}\) 

19 tháng 7 2016

Ta có : \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\Leftrightarrow8a=4\sqrt{\sqrt{2}+\frac{1}{8}}-\sqrt{2}\Leftrightarrow8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)

\(\Leftrightarrow\left(8a+\sqrt{2}\right)^2=16\left(\sqrt{2}+\frac{1}{8}\right)\)  \(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)

\(\Leftrightarrow4a^2+\sqrt{2}a=\sqrt{2}\Leftrightarrow4a^2=\sqrt{2}-\sqrt{2}a\)

Đặt \(Y=\sqrt{a^4+a+1}-a^2\) \(\Rightarrow XY=a+1\Leftrightarrow X.\left(-Y\right)=-\left(a+1\right)\) (1)

\(X+\left(-Y\right)=2a^2=\frac{\sqrt{2}-\sqrt{2}a}{2}=\frac{1-a}{\sqrt{2}}\) (2)

Từ (1) và (2) suy ra X và Y là hai nghiệm của phương trình \(t^2+\frac{1-a}{\sqrt{2}}.t-\left(a+1\right)=0\)

Giải phương trình trên được \(t_1=-\sqrt{2}\)  ; \(t_2=-\frac{x+1}{\sqrt{2}}\) 

Suy ra : \(X=\sqrt{2}\) (vì X > 0)

19 tháng 7 2016

nhân vế vs vế của 1 vs 2 à pn. nhưng t^2 ở đâu ra vậy

bucminh