Tìm x sao cho 3x^2-x6x=0 mng chỉ tớ cách giải vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Do 34 < 36 nên 34³⁴ < 34³⁶
B) 1²⁰²³ = 1
2023⁰ = 1
Vậy 1²⁰²³ = 2023⁰
C) Do 45 < 47 nên 45²⁰²³ < 47²⁰²³
Đề bài ko chính xác, nếu x bất kì thì tồn tại vô số x để P nguyên
Nếu \(x\) nguyên thì mới có hữu hạn giá trị x
Đề yêu cầu tìm x ặ?
\(\left(x+2\right)\left(3x-1\right)+\left(x-1\right)\left(2-3x\right)=6\)
\(\Rightarrow3x^2-x+6x-2+2x-3x^2-2+3x=6\)
\(\Rightarrow\left(3x^2-3x^2\right)+\left(-x+6x+2x+3x\right)+\left(-2-2\right)=6\)
\(\Rightarrow10x-4=6\)
\(\Rightarrow10x=10\)
\(\Rightarrow x=1\)
a: =>(3x+1)(3x-1)-(3x+1)(2x-3)=0
=>(3x+1)(3x-1-2x+3)=0
=>(3x+1)(x+2)=0
=>x=-1/3 hoặc x=-2
b: =>(3x+1)(6x+2)-(3x+1)(x-2)=0
=>(3x+1)(6x+2-x+2)=0
=>(3x+1)(5x+4)=0
=>x=-1/3 hoặc x=-4/5
A) Có \(f\left(x\right)=3x^2-2x-1\)
\(\Rightarrow f\left(1\right)=3.1^2-2.1-1\)
\(f\left(1\right)=3-2-1=0\)
\(\Rightarrow f\left(-\frac{1}{3}\right)=3.\left(-\frac{1}{3}\right)^2-2.\frac{1}{3}-1\)
\(f\left(-\frac{1}{3}\right)=3.\frac{1}{9}-\frac{2}{3}-1\)
\(f\left(-\frac{1}{3}\right)=\frac{1}{3}-\frac{2}{3}-1=-\frac{4}{3}\)
Có \(f\left(x\right)=3x^2-2x-1\)
Để \(f\left(x\right)=0\)
Thì \(3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
TH1 : \(\hept{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=1\end{cases}}}\)
TH2 : \(\hept{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)( loại )
Vậy x=1 thì f(x) = 0
A, ta có f(x) =3x2-2x-1
=> f(1)=3.12-2.1-1=3-2-1=0
\(f\left(\frac{-1}{3}\right)=3.\left(-\frac{1}{3}\right)^2-2.\left(-\frac{1}{3}\right)-1\)
= \(\frac{1}{3}+\frac{2}{3}-1=1-1=0\)
B, theo a ta có \(f\left(1\right)=f\left(\frac{-1}{3}\right)=0\)
Vậy x=1 và x=\(\frac{-1}{3}\)thì đa thức f(x)=0
tk mk nha bạn ,mk xong đầu tiên
*****Chúc bạn học giỏi*****
1. lấy chuột chích vào ảnh
2. nháy chuột phải chon lưu ảnh thành
3 chọn vao thư mục mik dễ lấy
4 lưu xong thi nó vô đt rùi
Bài 1:
câu a: 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
b, (15,25 + 3,75) \(\times\) 4 + ( 20,71 + 5,29)\(\times\) 5
= 19 \(\times\) 4 + 26 \(\times\) 5
= 76 + 130
= 206
c, \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{3}\) - \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{4}\)
= \(\dfrac{2}{5}\) + \(\dfrac{4}{15}\) - \(\dfrac{1}{5}\)
= \(\dfrac{6}{15}\) + \(\dfrac{4}{15}\) - \(\dfrac{3}{15}\)
= \(\dfrac{7}{15}\)
d, 1\(\dfrac{5}{7}\) + 7\(\dfrac{3}{6}\) + 2\(\dfrac{2}{7}\) - 4\(\dfrac{3}{6}\)
= (1 + 2 + \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\)) + ( 7 + \(\dfrac{3}{6}\) - 4 - \(\dfrac{3}{6}\))
= 3 + 1 + 3
= 7
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Ta có : 3x2 - 6x = 0
=> 3x(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)