a,(\(\left(\sqrt{50}-\sqrt{32}+\sqrt{8}\right):\sqrt{2}\) b,\(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
\(a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=\sqrt{2}\left(3-12+8-5\right)=-6\sqrt{2}\)
\(b,=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}=\sqrt{3}+2\sqrt{2}\)
\(c,=\sqrt{5}+\sqrt{5}+\dfrac{5}{\sqrt{5}}-1=3\sqrt{5}-1\)
\(d,=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+1+\sqrt{3}=2\)
a) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-4\sqrt{9.2}+2\sqrt{16.2}-\sqrt{25.2}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=2\sqrt{2}+\sqrt{3}\)
c) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{25.\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{9.5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=3\sqrt{5}-1\)
d) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}+\left|\sqrt{3}+1\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}+1=\left|2-\sqrt{3}\right|+\sqrt{3}+1=2-\sqrt{3}+\sqrt{3}+1=3\)
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)
\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=4\sqrt{2}\)
\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)
\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
Lời giải:
a.
\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)
b.
\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
c.
\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}}{2}+\dfrac{\sqrt{5}}{2}\)
\(=\dfrac{3\sqrt{5}}{2}\)
\(\left(\sqrt{3}+1\right)\cdot\dfrac{\sqrt{3}-3}{2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\dfrac{1-\sqrt{3}}{2}\)
\(=\dfrac{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{2}\)
\(=\dfrac{1-3}{2}\)
\(=-1\)
a) \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
\(=\sqrt{10^2\cdot2}-\sqrt{4^2\cdot2}+\sqrt{6^2\cdot2}\)
\(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}\)
\(=\left(10-4+6\right)\sqrt{2}\)
\(=12\sqrt{2}\)
b) \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
\(=4\cdot2\sqrt{5}-3\cdot5\sqrt{5}+5\cdot3\sqrt{5}-3\sqrt{5}\)
\(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}\)
\(=\left(8-15+15-3\right)\sqrt{5}\)
\(=5\sqrt{5}\)
c) \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)
\(=\left(2\cdot2\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\cdot2\sqrt{5}-2\sqrt{2}\right)\)
\(=\left(3\sqrt{5}-3\sqrt{2}\right)\left(72-10\sqrt{5}-2\sqrt{2}\right)\)
a: \(\dfrac{\sqrt{50}-\sqrt{32}+\sqrt{8}}{\sqrt{2}}\)
\(=\dfrac{5\sqrt{2}-4\sqrt{2}+2\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{\sqrt{2}}=3\)
b: \(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)
\(=\dfrac{4\left(\sqrt{5}+1\right)}{5-1}-\sqrt{5}\)
\(=\sqrt{5}+1-\sqrt{5}\)
=1