\(A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{380}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)
\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)
Đặt bt trên là A nha
Đổi |x-1|=|1-x|
Suy ra A=|1-x|+x-2|+|x-3|
Áp dụng BĐTGTTĐ ta có
A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra
Vậy x =2
b,
\(\left|3x+\frac{1}{2}\right|\ge0\)
\(\left|3x+\frac{1}{6}\right|\ge0\)
..........
\(\left|3x+380\right|\ge0\)
Suy ra đề bài \(\ge\)0
suy ra 58x \(\ge\)0
Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)
Tự tính nhé hok tốt
\(=3.\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\\ =3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=3\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\right)\\ =3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=3.\left(1-\frac{1}{10}\right)=3.\frac{9}{10}\)
\(=\frac{27}{10}\)
A=3/6+3/12+3/20+3/30+3/42+3/56
<=>1/3xA=1/6+1/12+1/20+1/30+1/42+1/56
<=>1/3xA=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
<=>1/3xA=1/2-1/8=3/8
<=>A=3/8:1/3=9/8
Vậy A=9/8
Đặt 3 chung ra ta dc 1/6+1/12+...+1/56
A=1/2.3+1/4.3+...+1/87.8
A=1/2-1/3+1/3-1/4+...+1/7-1/8
Rút gọn ta dc A=1/2-1/8
tự quy đồng nhé
\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=3.\left(1-\frac{1}{10}\right)\)
\(A=3.\frac{9}{10}=\frac{27}{10}\)
\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)
A=3.(1/2 +1/6 +1/12 +1/20+...+1/380)
A:3=1/1.2+1/2.3+1/3.4 +...+1/19.20
A:3=1-1/20
A:3=19/20
A=19/20.3
A=57/20
A=3/1X2+3/2X3+3/3X4+3/4X5+...+3/19X20
A=3(1/1X2+1/2X3+1/3X4+1/4X5+..+1/19X20
A=3(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/19-1/20)
A=3(1/1-1/20)
A=3.19/20
A=57/20
tk cho mk nha