Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{42}\)
\(=1+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)+ \(\frac{1}{6}-\frac{1}{6}-\frac{1}{7}+\frac{1}{7}\)+ \(\frac{1}{8}-\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{9}{9}-\frac{1}{9}\)
\(=\frac{8}{9}\)
Chúc bạn học tốt !!!
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}\)
\(=\left(1+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(+\left(\frac{1}{7}+\frac{1}{8}\right)-\left(\frac{1}{8}+\frac{1}{9}\right)\)
\(=1+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+\frac{1}{6}-\frac{1}{6}-\frac{1}{7}+\frac{1}{7}+\frac{1}{8}-\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)
M=3/1.2-5/2.3+7/3.4-9/4.5+11/5.6-13/6.7+15/7.8+17/8.9
=(1/1.1+2/1.2)-(2/2.3+3/2.3)+(3/3.4+4/3.4)-(4/4.5+5/4.5)+...+(8/8.9+9/8.9)(phần ... là làm tương tự nhé)
=1/2+1-(1/3+1/2)+(1/4+1/3)-(1/5+1/4)+...+(1/9+1/8)(phần ... là làm tương tự nhé)
=1+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+...+(1/8-1/8)-1/9
=1+0+0+0+...+0-1/9
=1-1/9
=8/9
\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\)
\(=\frac{3}{8}\)
\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)
\(=1-0-0-0-...-0-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
\(d,\)giống câu a tự làm nha mỏi tay quá.
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)
=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)
=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)
A=3/6+3/12+3/20+3/30+3/42+3/56
<=>1/3xA=1/6+1/12+1/20+1/30+1/42+1/56
<=>1/3xA=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
<=>1/3xA=1/2-1/8=3/8
<=>A=3/8:1/3=9/8
Vậy A=9/8
Đặt 3 chung ra ta dc 1/6+1/12+...+1/56
A=1/2.3+1/4.3+...+1/87.8
A=1/2-1/3+1/3-1/4+...+1/7-1/8
Rút gọn ta dc A=1/2-1/8
tự quy đồng nhé